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a b s t r a c t

In view of recent technological developments and new computational and graphical possibilities,
scientists and practitioners have become increasingly interested in studying how data and information
should be presented. For instance, in project management, it is now recommended to employ
dashboards instead of traditional reports. It is also believed that the usage of vectors, resembling the
hands of a clock, may increase the efficiency and effectiveness of data presentation and information
processing. In light of this, we propose a novel approach to visualization of uncertainty as defined by
triangular fuzzy numbers. This new representation is based on vectors whose length represents the
range of possible values of an uncertain parameter, while the slope reflects tendencies within possible
scenarios. The mathematical foundations and definitions along with the basic properties of this ap-
proach are demonstrated in detail. In particular, we show how to transform triangular representations
into vector ones and vice versa. The arithmetic operations of addition and multiplication by a crisp
number on these vectors are demonstrated as well. Possible applications of the new vector visualization
to project uncertainty representation and in project management are described. We also discuss both
the advantages and disadvantages of our approach in relation to the traditional visualization as graphs
of membership functions. Our proposal is complementary to the traditional one, and they should
be used in combination. The new graphical representation of triangular fuzzy numbers expands the
available toolbox for visualizing uncertainty not only in project management but in any other area.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Uncertainty, defined on the basic level as ‘‘lack of certainty’’ [1,
. 3], is present in everyday life both of individuals and organiza-
ions. It is classified in various ways, of which the following stand
ut [1, p. 33–34], [2, p. 33]:

– Ambiguity or knowledge uncertainty, defined as lack or
incompleteness of information. This type of uncertainty de-
pends on the quantity, quality, and relevance of the data
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and on the reliability and relevance of the models and
assumptions.

– Inherent variability uncertainty refers to true differences in
attributes due to heterogeneity or diversity. It cannot be
reduced by further measurement or study, it can only be
better characterized.

Both types of uncertainty can take on different forms [2, p. 36],
that is, the scenario, model, and the parameter/input uncertainty.
Here, we concentrate on the latter: the parameter uncertainty in-
volved in the specification of numerical values, like cost, duration,
etc.

Other authors differentiate between statistical and nonsta-
tistical uncertainty [3]. Statistical uncertainty is the one where
probability distributions can be used for quantitative uncertainty
analysis. The focus of our research is on nonstatistical uncer-
tainty, where probability distributions are not available. Several
approaches have been developed over the years to manage this
type of uncertainty. The most popular mathematical models are
based on fuzzy [4,5], rough [6], soft [7] and grey sets [8–10].
They are studied and compared to each other in several papers,
e.g., [11–13].

In this paper, we focus on triangular fuzzy numbers that can
be applied to represent uncertain parameters in various contexts.
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part from uncertainty, the most important problem that lies at
he root of the present paper is that of information visualization.
esigning appropriate and effective visualizations is far from
imple and effortless. As stressed in [14], it cannot be equated
ith only presenting data on a generated graph, especially if a
uitable and insightful graphical representation is crucial for the
ecision-making process.
Traditionally, fuzzy numbers are represented as graphs of

embership functions. In theory, membership functions of any
hape can be generated, and many of them may be adequate
or specific applications [15]. However, in practice, the vast ma-
ority of real-world applications, especially in social, economic,
nd management sciences, rely on triangular fuzzy numbers.
hey have been used to model parameter uncertainty in a num-
er of different areas, for example, in supply chain manage-
ent [16], inventory [17], production planning [18], service qual-

ty [19], product positioning [20], decision making [21], project
isk estimation [22], project selection [23] or project network
nalysis [24].
A theoretical explanation for this predominance of triangular

uzzy numbers over all other shapes is given in [25]. The following
wo arguments may be put forward:

– Simple definition. It requires the estimation of the only three
parameters which are used in computing algorithms while
intermittent values are usually not involved. This makes
triangular fuzzy numbers akin to an enhanced interval num-
ber.

– Mathematical tractability. Due to the low complexity of ad-
dition and multiplication by a crisp number on the closed set
of triangular fuzzy numbers, it is relatively easy to transfer
a great number of classical optimization algorithms or pro-
cedures from real numbers R into triangular fuzzy numbers.

riangular fuzzy number membership functions take the shape
f triangles. However, this representation, as simple as it may
eem, does not have to be the most appropriate for everyone.
or many, the link between the uncertain information and the
raphics of triangles may not be obvious. On top of that, certain
ypes of parameter changes in time will be easier to track if
hey are illustrated by shifts of the tip of a vector, resembling
he fluctuations of a clock hand, instead of changes in a triangle
hape.
This is especially true in the context of modern project man-

gement that, according to both researchers and practitioners,
hould be based on dashboards instead of traditional reports [26,
7]. Dashboards [28] are data visualization and analysis tools
hat show on one screen all the basic information necessary to
ake decisions. The idea has resulted in some software appli-
ations (e.g., https://thedigitalprojectmanager.com/tools/project-
ashboard-software/). Having the appropriate technologies at our
isposal, researchers are obliged to investigate modern ways of
isualization.
For this reason, in the present work, we propose an alternative

ector-based graphical representation of uncertainty as quanti-
ied by triangular fuzzy numbers and show its application to
odelling data in the context of project management. Because

he correspondence between traditional and vector-based repre-
entations of triangular fuzzy numbers is unique (one to one),
he new representation may be used interchangeably with the
raditional one. Since we deal with two alternative representa-
ions of the same uncertainty, for the sake of simplicity, we will
ometimes call the vectors ‘‘another representation of triangular
uzzy numbers’’.

The rest of the paper is organized as follows. In the next
ection, we briefly provide some specifics about uncertainty mod-
lling and picturing metrics in the context of project manage-
ent. The following sections include a detailed description of
2

our proposal, with its mathematical foundations and selected
properties. We also give some practical examples in the context
of project management. The article ends with a discussion of our
proposal, conclusions, and some future research prospects.

For convenience, the list of mathematical symbols and abbre-
viations used in this paper is provided in (Table 1).

2. Project management context

Projects can be defined as ‘‘temporary endeavours undertaken
o create a unique product, service or result ’’ [29]. Uniqueness,
inherent in projects [30] together with the turbulent project
environment and the limited and biased human perception [31],
imply that uncertainty is omnipresent in project management.
This is particularly true for parameter uncertainty [1, p. 33–
34]. Therefore, our research is focused on this uncertainty form,
especially in the context of the duration and costs of the project
activities.

The uncertainty in projects has to be monitored and con-
trolled, like any other project feature [29]. The knowledge uncer-
tainty is usually the highest at the beginning of projects and di-
minishes with their advancement. The variability uncertainty, in
turn, may be described better and better as the project progresses.

Similarly to other areas, uncertainty modelling in a project can
involve fuzzy numbers [32–34]. They have often been used in the
project planning stage [35] to model, known only to a certain
extent, project task duration times or cost values, as well as other
quantitative project parameters. As mentioned in the Introduc-
tion, triangular fuzzy numbers are the form of fuzzy numbers
that is used most frequently, also in the project management
context. Triangular fuzzy numbers express the actual knowledge
of experts and their subjective opinion on the pessimistic, most
possible, and optimistic value of the respective parameters. This
approach has certain advantages over the classical 3-point PERT
method of project planning, based on probability theory. Trian-
gular fuzzy numbers do not assume any probability distribution,
but refer to the subjective and mathematically simpler possibil-
ity theory [5]. This feature makes their application potentially
easier for non-mathematicians and non-engineers. Projects are
today omnipresent, and they appear not only in companies but
also in not-profit organizations, such as non-governmental or
public institutions. This makes the problem of understanding
and processing information by project participants of all possible
backgrounds of utmost importance.

Moreover, projects have been becoming more and more com-
plex [27]. For this reason, project management is nowadays a
difficult metaprocess where visualization plays an important role
in supporting project managers in their role ([36–38]). Visualiza-
tion should accelerate the decision-making process and replace
text reports. However, an incorrect graphical presentation can
lead to improper decisions [39]. That is why it is important
to select an adequate way of visualizing uncertain information,
adapted to each individual recipient.

The significance of appropriate visualization techniques in
conveying information has been recognized in the scientific lit-
erature for decades. Some basic rules of human visual processing
of graphical data were identified by Gestalt psychologists as early
as the beginning of twentieth century [40,41]. They proposed a
set of Gestalt laws regarding perceptual grouping, e.g., similarity,
closure, proximity, or continuation [42,43]. More recently, among
the first approaches to provide guidelines in this regard based
on theoretical foundations supported by experimental data, were
the works of Cleveland and McGill [44,45]. The authors identified
ten elementary perceptual tasks and determined their hierar-
chy based on the accuracy of the properties compared. They
suggested to use those graphical encodings that are as high as

https://thedigitalprojectmanager.com/tools/project-dashboard-software/
https://thedigitalprojectmanager.com/tools/project-dashboard-software/
https://thedigitalprojectmanager.com/tools/project-dashboard-software/


J. Schneider, D. Kuchta and R. Michalski Applied Soft Computing 137 (2023) 110155

n
i
i
a
t
t
s
f
I
r
b
t
t
s
t
s
i
B
b
i
b
f
e
t
w
t

p
s
t
s
a

Table 1
List of mathematical symbols and abbreviations.
Symbol Explanation First occurrence

ξ An uncertain parameter, a fuzzy number Page 3
l The smallest possible the uncertain parameter ξ can attain Page 3
m The possible value the uncertain parameter ξ can attain Page 3
r The largest possible value the uncertain parameter ξ can attain Page 3
ξ (x) Membership function of a fuzzy number Page 3
tr∗ (l, m, r) A triangular fuzzy number in traditional representation Page 3

µ The arithmetic mean of the smallest possible and the largest possible value: µ =
l + r
2

Page 3
−→
vc (µ, s, γ ) A triangular fuzzy number in vector representation Page 4
TV Transform taking the traditional representation of a triangular fuzzy number into the vector one Page 4
s Length of the vector −→

vc (µ, s, γ ): s = r − l Page 4
γ Angle of deviation from symmetry: γ = arctan (m − µ) Page 4
Tail Cartesian coordinates of the vector initial point in vector representation Page 4
Tip Cartesian coordinates of the vector terminal point in vector representation Page 4
γ△min Smallest possible angle of deviation from symmetry in vector representation Page 5
γ△max Largest possible angle of deviation from symmetry in vector representation Page 5
⊕
{△}

Addition operator of triangular fuzzy numbers in traditional representation Page 6

⊕
{→}

Addition operator of triangular fuzzy numbers in vector representation Page 6

⊕
{∢}

Addition operator of angles in the vector representation of triangular fuzzy numbers Page 6

⊙
{△}

Multiplication operator of triangular fuzzy numbers in traditional representation Page 7

⊙
{→}

Multiplication operator of triangular fuzzy numbers in vector representation Page 7

VT Transform taking the vector representation of a triangular fuzzy number into the traditional one Page 7
p
u

c
t
t

possible in the following ordering: position on a common scale
and non-aligned scales, length, direction, angle, area, volume, cur-
vature, shading, and colour saturation. In the context of project
management, Kerzner [27] provides practical indications con-
cerning the artwork (image, icon) used in the project dashboards,
the positioning, accuracy, colour, size, texture, etc. He claims that
the selection of graphics used to convey information is extremely
important in project management.

Accordingly, our new vector representation of triangular fuzzy
umbers extends the set of available techniques for visualiz-
ng uncertain information. Therefore, it seems to be potentially
nteresting and attractive for various stakeholders in project man-
gement. The new approach may have some advantages over the
raditional triangle representation. The preliminary study related
o the usability of vector and membership function-based repre-
entations of uncertain data [46] shows its potential usefulness
or visualization purposes in the context of project management.
n particular, the authors performed an experimentally-based
esearch designed to compare vector and membership function-
ased representations of uncertainty with respect to their effec-
iveness, efficiency, and participant satisfaction. They recorded
he accuracy of proper recognition of uncertain information pre-
ented by both visualizations relative to their textual depiction
o objectively assess the effectiveness. The efficiency and user
atisfaction measurements were subjectively evaluated by ask-
ng about ease of interpretation and attractiveness, respectively.
ased on the results from 76 subjects, they found that, overall,
oth representations appear to be effective to a similar degree
n conveying uncertain information. Some significant differences
etween men and women have been observed. The females per-
ormed better if vectors were used, while the males were more
ffective in the case of traditional representations. Similar pat-
erns were identified for ease of use and attractiveness. Generally,
omen favoured vector representations, while men preferred
raditional representations.

On the whole, the vector representation of fuzzy numbers
roposed in [46] was found acceptable and supportive by a sub-
tantial number of users. This result prompted us to investigate
heoretical aspects regarding soft computing for the vector repre-
entation (arithmetical operations), the problem of formal equiv-

lence between the traditional representation of fuzzy numbers o

3

and the vector-based one, as well as several mathematical prop-
erties of the vector representation. The results of this research
are presented here. Also, we focus here specifically on project
management context.

A project resembles a car journey. The car driver is heading
a destination and controls time and other parameters by means
of the dashboard with several meters, that change their indica-
tions dynamically. The same is true for a project manager. Here,
we discuss, especially in the examples, the dynamic changes in
the project situation and compare the respective visualizations
(traditional and vector-based one) from the point of view of
their user-friendliness. We investigate whether a vector-based
dashboard could be, at least for some users, more helpful than the
traditional one in decision making during the usually changeable
and unstable project implementation process.

No research has been conducted on the difference in the per-
ception of dynamic changes or tendencies in uncertain parameter
values represented by triangles and vectors. Here, the above-
mentioned clock hand similarity of vectors may be potentially
important for facilitating the project monitoring and control for
certain project stakeholders.

3. Triangular fuzzy numbers and their graphical representa-
tions

Triangular fuzzy numbers are a special case of fuzzy sets [5],
which are the basis of the possibility theory [5,47]. In economic
and social sciences, triangular and trapezoidal fuzzy numbers
are by far the most commonly used to represent a quantity
whose exact value is not known at the given time [25] and the
probability distribution cannot be determined. In this context, the
more subjective possibility degree of occurrence is used instead of
robability [48]. The possibility degree is given by experts. The
ncertain value of the parameter ξ can be represented by three

crisp numbers l, m and r such that l ≤ m ≤ r . These numbers
orrespond to the smallest possible value considered (l as left),
he largest possible value (r as right) and the value assumed to be
he most possible, i.e.m (middle). The most possible valuem has a
degree of possibility of 1, ξ (m) = 1, whereas the lower and upper
bound degrees of possibility are 0, i.e. ξ (l) = ξ (r) = 0. A degree

f possibility for each x : l ≤ x ≤ r is linearly increasing from
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ξ

(l) = 0 to ξ (m) = 1, and linearly decreasing from ξ (m) = 1 to
(r) = 0. This procedure formally defines a so-called membership
unction ξ (x) that, for each real x, assigns a degree of possibility
ccording to expert knowledge (1).

(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x − l
m − l

for x ∈ [l, m) ,

1 for x = m,

r − x
r − m

for x ∈ (m, r] ,

0 else.

(1)

otation 1. The shorthand notation for (1) used in this paper is
resented in (2):

(x) : = tr∗ (l, m, r) (x) , ξ : = tr∗ (l, m, r) . (2)

The support of ξ , as defined in (1), is the closed interval [l, r]
49]. Values between l and r (excluding l i r) are considered to be
ossible to a positive degree. Values beyond this interval are seen
s impossible. The broader the interval [l, r], the less information
e have about the quantity in question. Its width gives us some

nformation about the indeterminacy degree, which is defined in
he Collins dictionary [50] as the quality of being uncertain or
ague, and is linked with fuzziness in [51]. The relative position
f the value m, whose possibility degree is 1, indicates the value

which is assumed to be the most possible. Therefore, m shows
he skewness of the fuzzy numbers, that is, the inclination of the
ossibility degree of the values from support [l, r] towards lower
close to l), medium (around the middle µ =

l+r
2 ), or higher

close to r) values. Let us assume that a neutral situation occurs
hen the middle value µ is at the same time the most possible
alue m = µ. Then, if m ̸= µ, the experts have a more pessimistic
r optimistic opinion on the possibility distribution. The choice of
he adjective depends on the position of µ with respect to m and
n the nature of the value modelled by the fuzzy number. For
xample, if (m > µ) and the estimated parameter refers to ben-
fits, the expert opinion will be qualified as optimistic. If m > µ

nd the parameter refers to cost, the opinion represented by the
ame fuzzy number would be pessimistic.

.1. Traditional representation of triangular fuzzy numbers

The hitherto only and generally accepted way to visualize tri-
ngular fuzzy numbers is by drawing their membership function
(x). Any triangular fuzzy number given in a form tr∗ (l, m, r)

uniquely determines its membership function (1). For instance,
the triangular fuzzy number with m = 4 and a scope of indeter-
minacy [2, 5], denoted as tr∗ (2, 4, 5) corresponds to (3) and is
isualized by means of the membership function from Fig. 1.

r∗ (2, 4, 5) (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x − 2)

2
for x ∈ [2, 4) ,

1 for x = 4,
(5 − x) for x ∈ (4, 5] ,

0 else.

(3)

3.2. A new, vector representation of triangular fuzzy numbers

In this paper, we give an alternative representation of the
uncertainty defined by triangular fuzzy numbers as vectors point-
ing upwards from the value µ =

l+r
2 and leaning to the left

r right side of the vertical line x = µ. For example, the tri-
ngular fuzzy number tr∗ (2, 4, 5) can be represented as the
ector −→

vc (µ, s, γ ) =
−→
vc (3.5, 3, 26.55◦) defined in polar-type

oordinates, where s is vector’s length, γ is the angle between the
4

Fig. 1. Triangular fuzzy number tr∗ (2, 4, 5) represented by a triangle.

Fig. 2. Visualization of triangular fuzzy number tr∗ (2, 4, 5) by the vector
−→
vc (3.5, 3, 26.55◦) attached to x =

7
2 , of length 3, and angle γ = 26.55◦ .

ector and a vertical line x = µ, and µ is vector’s tail as shown
n Fig. 2.

In Fig. 2 and subsequent figures a blue dot is placed at x =

=
r+l
2 . Vector length s represents the scope of indeterminacy

nd is equivalent to the length of fuzzy triangle number’s support
l, r]. The angle γ , by which the vector is inclined to the left or
right, is determined by the relative position of the middle value µ

and the most possible value m. The angle indicates that the value
is less than µ by leaning to the left or greater than µ – leaning

o the right. Thus, the position of the pointer shows clearly the
nclination of the represented expert opinion, its pessimistic or
ptimistic touch.
As a mathematical formula, our new vector representation is

efined by the following equivalence transform (TV , Triangle →

ector), which takes the three defining parameters of a triangular
uzzy number: l, m, and r into the alternative three parameters
, s, γ (4).

V : (l, m, r) → (µ, s, γ ) (4)

here:

• µ is the arithmetic mean of l and r, µ =
r+l
2 ,

• s is the vector’s length equal to the triangle’s support length
s = r − l,

• γ is the angle of inclination to the left or right from the
vertical line x = µ, which is given by (5).

an (γ ) =
m − µ

1
⇒ γ = arctan (m − µ) . (5)

hus, the uncertain quantity ξ may be interchangeably and equiv-
lently represented by either the triple (l, m, r) or (µ, s, γ ). In
he latter case, the notation we adapt is given in (6).

otation 2.

:=
−→
vc µ, s, γ . (6)
( )
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Fig. 3. A triangular fuzzy number in its traditional representation in upper graph
(orange) and in a vector form in down graph (light blue).

In compact form the transform TV of one defining triple to the
other is given by (7):

TV
[
tr∗(l,m, r)

]
↦→

−→
vc

(
l + r
2

, r − l, arctan
(
m −

l + r
2

))
:=

−→
vc (µ, s, γ )

(7)

The geometric meaning and provenance of µ, s, and γ is shown
in Fig. 3, where we can also compare both representations. The
vector coefficients (parameters) can be identified graphically in
the traditional representation as is presented in the graph of its
membership function.

The vector representation of triangular fuzzy numbers defined
in polar coordinates, can also be expressed by Cartesian coor-
dinates, which may, at times, be more convenient to use. The
vector’s tip and tail coordinates of the given triple (µ, s, γ ) can
be computed according to (8), (9), and (10).

Tail (µ, 0) and tip (µ + s · sin (γ ) , s · cos (γ )) , (8)

whereby

sin (γ ) =
m − µ√

12 + (m − µ)2
, (9)

nd

os (γ ) =
1√

12 + (m − µ)2
. (10)

xample 1. Tip and tail vector representation of a triangular
uzzy number.

The triangular fuzzy number tr∗ (1, 4, 5) may be written in a
ector representation as (11).

→
vc (3, 4, 45◦) , (11)

r as tip and tail coordinates by (12).

ail =

(
3
0

)
, tip =

(
5.83
2.83

)
, (12)

s shown in Fig. 4.

.3. Border cases of the vector representation

Theoretically, in the general case, γ can take values from
90◦ and +90◦ as given in (13), (14), and (15) and schematically
5

Fig. 4. The traditional and vector representations corresponding to the triangular
fuzzy number tr∗ (1, 4, 5) given in Cartesian coordinates with indicated tail and
ip coordinates.

resented in Fig. 5.

γmin = lim
(m−µ)→−∞

arctan (m − µ) → −90◦, (13)

max = lim
(m−µ)→∞

arctan (m − µ) → 90◦, (14)

that is to say that:

γ ∈ (−90◦, +90◦) . (15)

However, the triangular fuzzy number fulfils in fact the con-
dition γ ∈

[
γ△min, γ△max

]
, where the interval of possible γ values

is a proper subset of the interval (−90◦, +90◦). Since µ is the
middle point of the support of the triangle tr∗ (l, m, r), (m − µ)
measures the degree of deviation from symmetry meant as m =

µ =
r+l
2 . One may single out three border cases that determine

the value range of γ . For symmetric triangular fuzzy numbers, we
have (16):

µ = m → γ△sym = arctan (m − µ) = arctan (0) = 0◦ (16)

The other two cases refer to the so-called degenerate triangle
numbers of type tr∗ (m, m, r) or tr∗ (l, m, m). This time the most
possible value m coincides with one of the endpoints of the
support [l, r], and then goes to infinity with the left or right
endpoint. Therefore, according to (13) and (14), one receives an
angle of γ = −90◦ or +90◦. Maximal and minimal values of γ

depend on maximal and minimal values of (m − µ) and can be
computed by (17) and (18) respectively.

min (m − µ) → m = l → m − µ = l −
r + l
2

=
2l − r − l

2
= −

r − l
2

= −
s
2
,

γ△min = arctan
(
−

s
2

) (17)

max (m − µ) → m = r → m − µ = r −
r + l
2

=
2r − r − l

2
=

r − l
2

=
s
2
,

△max = arctan
( s
2

)
(18)
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γ

T

o

Fig. 5. Visualization of γ maximal and minimal values in general, and in triangular fuzzy numbers for an exemplary s = 8, and γ△min = −75.96◦ < γ < + 75.96◦
=

△max , marked with the green dot.
Fig. 6. Symmetricity and degeneracies in traditional and vector representations of the uncertainty defined by (1).
hus, for degenerate triangular fuzzy numbers, the (m−µ) value
ranges from −

r−l
2 to +

r−l
2 and extreme values of γ depend only

n the indeterminacy degree s. One can also observe that the
higher the indeterminacy measured by s, the higher maximal
possible absolute values of γ are. For example, for any triangular
fuzzy numbers such that s = r − l = 4 and r ≥ m ≥ l,
γ ∈ (−63.43◦, +63.43◦). Sample cases of degenerative triangular
fuzzy numbers with s = 4, i.e. tr∗ (2, 2, 6) , tr∗ (2, 4, 6), and
tr∗ (2, 6, 6) are shown in Fig. 6. The light blue area in the vector
representations shows the possible range of γ values for these
examples.

3.4. Arithmetical operations in traditional and vector representa-
tions

In this section, we present the addition of two triangular
fuzzy numbers and the multiplication of a triangular fuzzy num-
ber by positive crisp numbers in both representations. These
operations are sufficient for most project management applica-
tions, e.g., the determination of project budgets, schedules, or risk
appraisal.
6

Notation 3. In this paper, we denote addition in traditional repre-
sentation by ⊕

{△}

and addition in the vector representation by ⊕
{→}

.

Before defining the addition of triangular fuzzy numbers in
their vector representation, we provide a reminder of the addition
definition for membership functions. For two triangular fuzzy
numbers given in their traditional representation tr∗ (l1,m1, r1)
and tr∗ (l2,m2, r2) one has by definition (19) [4].

tr∗ (l1,m1, r1) ⊕
{△}

tr∗ (l2,m2, r2) = tr∗ (l1 + l2, m1 + m2, r1 + r2) .

(19)

The addition operation in the vector representation for two vec-
tors −→

vc (µ1, s1, γ1) and −→
vc (µ2, s2, γ2) must be mathematically

consistent with (19), which necessarily entails definitions (20)
and (21). For easier readability, we first introduce the following
addition operation on angles.

Notation 4. In this paper, we denote the addition of angles in the
vector representation of triangular fuzzy numbers by ⊕ .
{∢}
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Fig. 7. Addition of two triangular fuzzy numbers in traditional and vector representations.
E
−

efinition 1.

1 ⊕
{∢}

γ2 = arctan (tan (γ1) + tan (γ2)) (20)

efinition 2.

→
vc (µ1, s1, γ1) ⊕

{→}

−→
vc (µ2, s2, γ2) =

−→
vc

(
µ1 + µ2, s1 + s2, γ1 ⊕

{∢}

γ2

)
(21)

emark 1. The vectors given in (8) cannot be added in the usual
2 sense because of (22) and (23):

in
(

γ1 ⊕
{∢}

γ2

)
=

(m1 + m2) − (µ1 + µ2)√
12 + ((m1 + m2) − (µ1 + µ2))

2

=
m1 − µ√

12 + (m1 − µ1)
2

+
m2 − µ√

12 + (m2 − µ2)
2

= sin (γ1) + sin (γ2)

(22)
os

(
γ1 ⊕

{∢}

γ2

)
=

1√
12 + ((m1 + m2) − (µ1 + µ2))

2

=
1√

12 + (m1 − µ1)
2

+
1√

12 + (m2 − µ2)
2

= cos (γ1) + cos (γ2) .

(23)

or instance (24):

xample 2. Adding two vector representations of triangular
uzzy numbers.

→
vc (2, 4, 15◦) ⊕

{→}

−→
vc (3, 2, 30◦) =

−→
vc (5, 6, 40.21◦) (24)

s depicted in Fig. 7.
Some more additions of sample vector representations are

iven in Example 3 (25). They serve mainly to give a feeling for
he TV -addition of angles, as the first and second components of
he triples added in (21) are straightforward.
7

xample 3. Additions of sample vectors.
→
vc (3, 2, 30◦) ⊕

{→}

−→
vc (5, 1, 10◦) =

−→
vc (8, 3, 37.00◦)

−→
vc (3, 2, −30◦) ⊕

{→}

−→
vc (5, 1, −10◦) =

−→
vc (8, 3, −37.00◦)

−→
vc (3, 2, 50◦) ⊕

{→}

−→
vc (5, 1, 60◦) =

−→
vc (8, 3, 71.12◦)

−→
vc (3, 2, 50◦) ⊕

{→}

−→
vc (5, 1, −60◦) =

−→
vc (8, 3, −28.38◦)

−→
vc (3, 2, −50◦) ⊕

{→}

−→
vc (5, 1, −60◦) =

−→
vc (8, 3, −71.12◦)

(25)

Remark 2. In general, we have, by construction, (26):

− 90◦ < γ△min < γ < γ△max < + 90◦. (26)

which can be schematically seen in Fig. 5. For consistency, Defi-
nition 1 (20) must yield (27):

−90◦ <

(
γ1 ⊕

{∢}

γ2

)
△min

≤

(
γ1 ⊕

{∢}

γ2

)
≤

(
γ1 ⊕

{∢}

γ2

)
△max

< +90◦,

(27)

Assuming (28):

γ1 = arctan (m1 − µ1) , γ2 = arctan (m2 − µ2) , (28)

we observe that (29):

γ1 ⊕
{∢}

γ2 = arctan (tan (γ1) + tan (γ2))

= arctan ((m1 − µ1) + (m2 − µ2))

= arctan ((m1 + m2) − (µ1 + µ2)) .

(29)

Let us add, for instance, two triangular fuzzy numbers with a large
indeterminacy of s = 115, e.g., tr∗ (0, 115, 115). The maximal
vector angle for these individual cases is γ△max = 89◦. The max-
imal γ for the resulting vector tr∗ 0, 230, 230 is 89.5◦ (30).
△max ( )
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9◦
⊕
{∢}

89◦
= arctan (tan (89◦) + tan (89◦)) ≃ 89.5◦. (30)

his specific borderline example shows that the sensitivity of
hanging the vector direction is smaller for larger absolute values
f γ , that is while deviating farther from the vertical line x = µ.

otation 5. In this paper, we denote the product of a positive
risp real number and a triangular fuzzy number in the traditional
epresentation by ⊙

{△}

and the equivalent for the vector representation

y ⊙
{→}

.

For any real positive crisp value c and a triangular fuzzy
umber with non-negative l, m, r, given in its traditional repre-
entation tr∗ (l, m, r) one has by definition (31).

⊙
{△}

tr∗ (l, m, r) = tr∗ (c · l, c · m, c · r) . (31)

he equivalent formula of (31) in the vector representation of the
riangular fuzzy number is given in (32).

⊙
{→}

−→
vc (µ, s, γ ) =

−→
vc (c · µ, c · s, arctan(c · tan (γ ))) . (32)

ormula (32) results from transformation TV (7) in the following
ay (33).

V
[
tr∗ (c · l, c · m, c · r)

]
=

−→
vc

(
c · l + c · r

2
, c · r − c · l, arctan

(
c · m −

c · l + c · r
2

))
=

−→
vc

(
c ·

l + r
2

, c · (r − l) , arctan
(
c ·

(
m −

l + r
2

)))
=

−→
vc (c · µ, c · s, arctan (c · (m − µ)))

=
−→
vc (c · µ, c · s, arctan (c · tan (γ ) ))

(33)

or example, 2 ⊙
{△}

tr∗ (0, 2, 3) = tr∗ (0, 4, 6) is equivalent with

⊙
{→}

−→
vc (1.5, 3, 26.57◦) =

−→
vc (3, 6, 45◦). A graphical illustration

f this example is shown in Fig. 8. It should be noted that the
ultiplication of the triangular fuzzy number by a crisp positive

eal value does not change the sign of the γ angle in its vector
epresentation.

.5. Back-transforming from vectors to triangles

With (7) showing the transformation from traditional rep-
esentation to vectors, it is necessary to be able to go back.
hat is, given vector representation −→

vc (µ, s, γ ), compute the
orresponding traditional representation tr∗ (l, m, r). Obviously,
= µ −

s
2 , and r = µ +

s
2 . The m parameter can be obtained

rom the fact that tan (γ ) = m − µ (see (5)), which gives us
= tan (γ )+µ. Thus, this back-transformation TV−1

= VT from
ector to traditional representation is given in (34):

T
[−→
vc (µ, s, γ )

]
= tr∗

(
µ −

s
2
, tan (γ ) + µ, µ +

s
2

)
= tr∗ (l,m, r) .

(34)

t may be desirable to perform computations in one representa-
ion (triangles) but display results in the other (vectors). There-
ore, it needs to be ensured that at least additive operations carry
ver from one representation to the other and back. That is, we
eed to show (35):

V
[
tr∗

1 ⊕ tr∗

2

]
= TV

[
tr∗

1

]
⊕ TV

[
tr∗

2

]
. (35)
{△} {→}

8

his is shown by performing the following calculations (36).

V
[
tr∗

1 ⊕
{△}

tr∗

2

]
= TV

[
tr∗ (l1 + l2,m1 + m2, r1 + r2)

]
=

−→
vc

(
(r1 + r2) − (l1 + l2)

2
, (r1 + r2)

− (l1 + l2) , arctan
[
m1 + m2 −

(r1 + r2) − (l1 + l2)
2

])
=

−→
vc

(
r1 − l1

2
+

r2 − l2
2

, (r1 − l1)

+ (r2 − l2) , arctan
[(

m1 −
r1 + r2

2

)
+

(
m2 −

l1 + l2
2

)])
=

−→
vc (µ1 + µ2, s1 + s2, arctan (tan (γ1) + tan (γ2)))

=
−→
vc (µ1, γ1, s1) ⊕

{→}

−→
vc (µ2, γ2, s2) = TV

[
tr∗

1

]
⊕

{→}

TV
[
tr∗

2

]
.

(36)

4. Examples of applications to project management

In this section, we illustrate the usage of both representations
of the uncertainty represented by triangular fuzzy numbers in
the context of project management. In project management, one
distinguishes 10 project management knowledge areas and 49
project management process groups [52]. Our examples relate
mainly to the knowledge area of Project Schedule Management
and to two process groups linked to this knowledge area: Esti-
mate Activity Durations and Control Schedule, as well as to the
knowledge area of Project Risk Management.

The example fuzzy numbers which are displayed in Figs. 9, 10,
and 11 represent durations of not yet started project activities,
which are characterized by non-statistical uncertainty.

A possible scenario served by the examples is the following.
There are three potential suppliers of a service which is indis-
pensable for the activity (for instance, providing a number of
hoists and equipment handling at some stage of a construction
project) whose time duration is being estimated. The first sup-
plier’s service is superior to other suppliers’ service, resulting in
a maximally shortened activity performance time. The activity
duration corresponding to this supplier is represented by the
number l. Due to the supplier’s high financial demands, it is
hardly possible that this firm will be contracted. Then there is
another supplier, supplier 3, whose service is inferior, resulting in
a prolonged duration of the activity, denoted as r. Finally, there is
a compromise supplier 2 — the time we estimate they will need
for the job is m. Most possibly, this supplier will be contracted;
therefore, the degree of possibility is 1.

A change in the internal situation of each of these suppliers (fi-
nancial trouble, unexpected sick leaves, defaults of other clients,
or on the contrary, a sudden increase in productivity) can affect
each of the three estimates of l, m, r independently — as the
project proceeds, each of the estimates may have to be moved in
one or other direction.

A different scenario serving the same example Figs. 9, 10, and
11 could be a single contractor for the same activity who has a
varying (maximal, minimal, in between) workforce.

In the context of time duration of activities in a project the
optimistic inclination would mean that the most possible value
m is closer to the minimal possible value l and γ negative, the
pessimistic inclination (γ positive) would occur in the opposite
case. The fuzzy estimate of an activity duration directly influences
the predicted entire project duration, if the task belongs to the

critical path [39].
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Fig. 8. Multiplication of the triangular fuzzy number by a crisp positive real value in traditional
(
2 ⊙

{△}

tr∗ (0, 2, 3) = tr∗ (0, 4, 6)
)
, and vector

2 ⊙
{→}

−→
vc (1.5, 3, 26.57◦) =

−→
vc (3, 6, 45◦)

)
representations.
Fig. 9. Estimation of the task duration changing over time in Example 4. From rather optimistic assessment to gradually more and more pessimistic.
The selection of experts and the entire Estimate Activity Du-
ations process are described in detail in [53]. The process is
sually based on interviews with people who are knowledgeable
bout the project or its selected aspects. They are called ‘‘sub-
ect matter experts’’ and are most often members of the project
eam and its management, contractors, or advisors. The type
nd structure of interviews must be adapted to the interviewee
nd the information required. They have to take into account
arious types of biases that deteriorate the estimation quality.
ometime estimates are developed in workshops with 20–25
articipants rather than interviews with a single or a few persons.
hree-point estimates are especially popular. In our examples, we
ssumed arbitrary triangular fuzzy values that were selected to
9

represent some of the typical scenarios in the project manage-
ment practice.

The estimations of activity durations are performed in the
following moments:

– Before the project starts with respect to all project activities
or tasks – the two notions will be treated as synonyms. Var-
ious duration estimation methods mainly based on expert
knowledge can be used here [52].

– Repeatedly at constant intervals during the whole project
course with respect to yet non-started project activities.
Here, updated expert knowledge and experience gathered
in the project so far, is used.
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Fig. 10. Estimation of task duration changing over time in Example 5. From positive assessment to negative and again to even more positive.
Fig. 11. Two different tasks at the same time in traditional and vector representations.
n the first two examples (Examples 4 and 5) we consider three
onsecutive moments of the project and one and the same activ-
ty, which has not been started up to the latest of those moments.
he activity duration is expressed, in each of the considered
oments, by means of triangular fuzzy numbers provided by
xperts. The first moment t0 is the project start, the two other

moments occur during project execution.

Example 4. Duration estimation of a task updated by experts in
consecutive moments. From a rather optimistic assessment to a
gradually more and more pessimistic assessment.

Here (Table 2) the experts are convinced at all the three
moments of time t , i = 0 . . . 2 that the task duration x would
i

10
be included somewhere in the interval x ∈ [1, 6]. However, with
the project advancing, and additional information available, they
change their mind about the inclination (skewness) of the fuzzy
estimation, i.e. the relative position of the most possible value
with respect to the support centre. At the beginning (t0), they
think the most possible value of the task duration is about m = 3,
thus, they assign to the fuzzy estimation an optimistic inclination.
Later, at time t1, it is re-evaluated to m = 4 changing the
estimation inclination in the pessimistic direction, and at moment
t2, the experts’ opinion shifts to m = 5, thus the pessimistic
inclination increases. This means that as the project progresses,
the estimation of the most possible value of the task duration
turns out to be more pessimistic than it was judged at the project
beginning, and this tendency is persevering. Furthermore, at a
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Table 2
The task duration uncertainty estimated at three moments in time for Example 4, given in traditional and vector representations.

Type of representation Task duration estimates

t0 t1 t2
Triangular tr∗ (1, 3, 6) tr∗ (1, 4, 6) tr∗ (1, 5, 6)
Vector −→

vc (3.5, 5, − 26.57◦)
−→
vc (3.5, 5, + 26.57◦)

−→
vc (3.5, 5, + 56.31◦)
Table 3
The task duration uncertainty estimated at three moments in time for Example 5, given in traditional and vector representations.

Type of representation Task duration estimates

t0 t1 t2
Triangular tr∗ (2, 4, 7) tr∗ (2, 5, 7) tr∗ (2, 3, 7)
Vector −→

vc (4.5, 5, − 26.57◦)
−→
vc (4.5, 5, + 26.57◦)

−→
vc (4.5, 5, − 56.31◦)
o
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certain moment in time the optimism of experts with respect
to the duration of the task in question turns into pessimism.
Such pieces of information are crucial for the Control Schedule
and Project Risk Management processes. The project manager
and the project team should address the problem as soon as
possible, preferably before the task in question starts. The sooner
they react, the more chances they have to solve the issue: ei-
ther by reducing the increasing most possible task duration or
by making sure that the longer most possible duration will be
acceptable from the point of view of the final project evaluation.
The tendency observed in the task estimation may also indicate
some serious problems in the project, and the sooner they are
identified, the higher the project success chances.

Fig. 9 shows a graphical confrontation of the traditional and
ector representations of this example. Let us compare these
isualizations with respect to the basic information they should
onvey, that is, the increasing most possible duration of the task
n question and the switch from an optimistic opinion on this
alue to a more and more pessimistic one. This is shown by
he shift of the most possible duration value of the activity in
uestion from below the middle value of the interval [1, 6] to
arther and farther to the right. The visualization should be as
triking as possible to attract the attention of the, usually very
usy, authorized members of the team, at the earliest possible
oment. In the authors’ opinion, the vector representation works

n this respect better than the traditional one. The traversal of the
iddle point of interval [1, 6] is much more clearly visible in the
ase of vectors, as the pointer completely changes the direction.
Also, if we consider the S-type shape of the function in Fig. 5,

e can see that the tendency which started before moment t1
the gradual passage from optimistic inclination in moment t0 to
deepening pessimism) will be most visible shortly before and

ight after the traversal of the middle point. In this area, small
hanges of m − µ influence the most the value of γ . This means
hat the vector representation is most appealing (the clock hand
oves the most) around the neutral point m − µ: shortly before

t and right after it. Although the changes in the triangles’ shapes
how the same moves of inclination from optimism to pessimism,
hey do so by far less clearly, thus, seem to be less useful from the
oint of view of effective project management.

xample 5. Duration estimation of a task updated by experts
n consecutive moments. From rather optimistic assessment to a
essimistic one, and back to more optimistic that the original one.

In this example, we take a look at a similar situation as in
xample 4 but the tendency in the task duration estimations is
ifferent. Here, the triangular fuzzy numbers are defined as in
able 3.
Graphical visualizations of both representations are shown

n Fig. 10. The changes, as in the previous example, regard the
11
Table 4
Estimations of the duration of a project task in two modes A and B for
Example 6, given in traditional and vector representations.

Type of representation Task duration estimates (t0)

Mode A Mode B

Triangular tr∗ (3, 5, 8) tr∗ (1, 5, 8)
Vector −→

vc (5.5, 5, − 26.57◦)
−→
vc (4.5, 7, + 26.57◦)

most possible values. However, here, after the negative shift from
below the middle point of the interval [2, 7] (t0) to a value
over the middle point in moment t1, the estimation of the most
possible value in moment t2 returns below the middle value and
is better (lower) than in moment t0. Thus, we have a shift from
optimism to pessimism and then back to even higher optimism
than originally. This could be achieved thanks to taking some
decisive measures addressing the initially negative trend, after
the warning received in moment t1. Again, the interpretation
f the three estimations of parameter uncertainty of this trend
nd the switch between optimism and pessimism appears to be
learer in the vector representation compared to the traditional
pproach. The changes in the positions of clock hands are more
ppealing than the changes in the shape of the triangles.
In Example 6 we consider one single moment, before the

roject starts, in which we estimate the duration of a task. In this
oment, two different execution modes are possible, e.g., exe-
uted in two distinct technologies or by two separate teams. We
hould choose one mode for actual execution.

xample 6. Comparison of two different task modes at the same
ime, before the project starts.

Let us now consider a single moment t0 before the project
tarts, and a project task with duration estimations of task ex-
cution modes A and B, specified as in Table 4.
Here we are facing a situation where the duration estimations

or both modes have the same most possible value (m = 5),
ut its position with respect to the middle value of the sup-
orts along with the lengths of the supports are different. These
epresentations are visualized in Fig. 11.

In this example, the duration of the task in both modes has the
ame most possible value. Thus, the selection of the mode has to
e performed using other criteria. The natural proposals are as
ollows:

I. the minimal possible value — preferably as small as possi-
ble,

II. the maximal possible value — preferably as small as possi-
ble,

III. the indeterminacy degree — preferably as small as possible,
IV. the optimism degree — preferable as big as possible.
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he decision maker has to select the criteria and their relative
mportance to make the final decision. For the evaluation of the
odes under criteria I and II, the decision maker will probably be
etter supported by the traditional representation. However, for
riteria III and IV, the vector representation appears to be more
fficient and effective. The vector position immediately shows the
nclination, either pessimistic or optimistic, whereas the vector
ength permits one to evaluate easily the indeterminacy degree.
lthough the same information can be extracted from the tradi-
ional representation, this would require from the decision maker
uch more mental effort.
Similar images as in Figs. 9–11 could be displayed on the

roject dashboard for the total duration of the project, estimated
n the given moment and calculated as the sum of activity du-
ations from the critical path, thus the longest project network
ath. Since in the fuzzy case the longest path is not always
niquely determined (see, e.g., [54–57]), the length estimates
nd the consecutive changes for several paths might have to be
isplayed on one dashboard. This means that, depending on the
epresentation chosen, the decision maker would be presented
ither with several triangles or with several vectors. The vector-
ased display that uses ‘‘clock-similar’’ symbols can be, in our
pinion, more user-friendly than a display based on triangles.

. Discussion and conclusions

In this research, we proposed a novel method for visualizing
ncertainty. In this new approach, we use vectors to graphically
how uncertain information about a given parameter, which is
raditionally represented by triangular membership functions.
ur vectors are defined by three crisp numbers (µ, s, γ ). The

traditional representation also uses three parameters (l, m, r)
that define the triangular membership function. However, the
interpretation of the parameters is different in both representa-
tions. The vector anchor µ is equivalent to the middle point of the
support [l, r] of the triangular membership function. The vector
length s corresponds to the support length, which represents the
indeterminacy of the parameter represented. The vector direction
is specified by γ , which is defined as the angle between vertical
ine x = µ and the line going through points (µ, 0) and (m,
), where m denotes the most possible value of the triangular
uzzy number. The vector representation may also be specified
y Cartesian coordinates of its tail and tip points.
We showed that the vector representation is mathematically

quivalent to the traditional one and derived formulas for trans-
orming one into the other. In this context, we analysed border
ases to illustrate properties of the new representation. We also
ave formulas for the addition of two fuzzy parameters and
ultiplication of a parameter by a crisp number in the vector

epresentation.
Although both representations are defined by three crisp num-

ers, the difference in their shapes (vector versus triangle) is
onsiderable and may have a high influence on the perception of
he underlying information. Triangles, apart from moving along
he abscissa, may change the lengths of their three sides and the
ize of three angles, which does not correspond to any phenom-
na occurring in everyday life. Accordingly, a change in a single
ncertain parameter involves simultaneous changes of seven in-
ertangled features. In a vector only three features may change:
ixing point, length, and inclination. Moving points and changing
engths are natural for the human eye to detect. Changes in
nclination correspond to the movements of the hands of clocks
r meters on the car dashboards, which humans are very accus-
omed to and comfortable with. For convenience, we have put
ogether the main properties of our proposal and compared them
12
with the corresponding features of the traditional approach in
Table 5.

By providing illustrative examples, we show how this new
approach may be applied to project management. We consid-
ered and compared visualizations of both representations for the
duration estimation of a task whose assessment changed from
rather optimistic to more and more pessimistic (Example 4) as
well as from optimistic to more pessimistic and back to optimistic
(Example 5). The underlying problem was the ease of perception
of the respective phenomenon by the project manager. It is es-
pecially important in the midst of project execution, when they
are dealing with dozens of project tasks and have to identify as
quickly as possible the problematic ones. It appears that the vec-
tor representation is more natural and appealing and, thus, would
provide a more efficient (from the point of view of the project
manager) visualization of the current situation of individual tasks.
The last example (Example 6) concerned the estimation of the
project task duration in two possible implementation modes. The
underlying problem here was the need to choose one mode for
actual project implementation. This is a multicriterial problem.
Here the two representations turned out to be complementary:
the vector representation visualizes better the difference between
the two modes according to some criteria, and the traditional one
— according to other ones.

An important soft computing problem needs to be solved if we
want to identify a critical path when fuzzy numbers are used to
represent project parameters (we mentioned it after Example 6).
In such a case, it is necessary to rank (or find the maximum
of) fuzzy numbers representing the lengths of several possible
paths. This problem is complex and has been subject to exten-
sive research for the traditional representation of fuzzy numbers
(e.g., [58,59]). It becomes even more difficult to rank project
network paths with fuzzy activity durations (e.g., [54–57]). Often
no unique solution exists, and decision makers have to decide
arbitrarily which ranking they prefer. The existing ranking meth-
ods of fuzzy numbers are strongly determined by their traditional
triangular representation — they use notions like centroids, are
based on fuzzy number levels, or areas under a selected section
of the membership function.

Our new approach for representing fuzzy numbers as vectors
provides a completely new perspective for the problem of ranking
fuzzy numbers, which should be investigated in the future. We
hypothesize that the vector representation may give rise to new
fuzzy numbers ranking methods that can be potentially more
appropriate in some cases and better reflect the decision maker
preferences. It would be interesting to compare the rankings pro-
vided by various decision makers for both representations. In the
context of project management, this could substantially increase
the spectrum of project uncertainty management methods.

In the presented context, vector representations seem to be
better and less cognitively demanding than triangles, although in
some applications they should be accompanied by the traditional
representation. As was demonstrated, vector direction changes
are clear and evident at first glance, especially when the angle’s
sign reverses, which is not the case for changes in the shapes of
triangles.

Our previous study on the usability of using vectors as a
graphical representation of uncertainty [46] showed the poten-
tial usefulness of this approach for visualization purposes in a
managerial context. In particular, it appears to be more adapted
to the needs of project managers in some practical cases. This
preliminary investigation involved scenarios in which static in-
formation was presented. It indicated the overall equivalence of
both representations in terms of efficiency and effectiveness. This
paper’s sample visualizations of uncertainty changes over time
(Examples 4 and 5) in a project management context suggests
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Table 5
Properties comparison of traditional and our representations of triangular fuzzy numbers.
Traditional triangular representation Our vector representation

Graphical form:

Triangle △ Vector →

Numerical form:

Three crisp numbers (l, m, r):

l = µ −
s
2

(smallest value),

m = tan (γ ) + µ (most possible value),

r = µ +
s
2

(largest value).

Three crisp numbers (µ, s, γ ):

µ =
l + r
2

(middle value),

s = r − l (indeterminacy degree),
γ = arctan (m − µ) (pessimistic or

optimistic tendency).

In Cartesian coordinates:
Tip (µ, 0),
Tail (µ + s · sin (γ ) , s · cos (γ )).

Graphical features influenced by a change in an uncertain parameter value:

– Location along the abscissa,
– Lengths of three triangle sides,
– Sizes of three triangle angles.

– Tail location along the abscissa,
– Vector length,
– Vector direction.

Seven components may change, thus making visual
processing more challenging and requiring more
cognitive effort.

Only three components change, thus simpler and faster
visual processing takes place and less cognitive effort is
required.

Difference between pessimistic or optimistic tendency (m − µ):

Is measured by distance, which is scale-dependent. Is measured by angle, which is scale-invariant.

Change in pessimistic or optimistic tendency (m − µ):

The change in the shape of a triangle is not
obvious and is visually more difficult to detect.

It is easier to spot the change by observing the vector
direction. This may facilitate early identification of
forthcoming problems and speed up corrective decisions.

Dynamic visualization of uncertain parameter changes in time:

Less obvious interpretation since more graphical
features change.

Better suited as they resemble clock hands movements
or car meters.

Visualization of multiple uncertain parameters:

Processing many triangles is more difficult and
graphically awkward as compared to processing
multiple vectors.

Displaying many vectors is less visually cluttered and
easier to interpret than displaying multiple triangles.
They resemble vector fields.

Computer implementations and visualizations:

More troublesome compared to vectors from the
user interface design point of view.

Easier, since vectors are graphically more compact and
take up less space in the graphical user interface.
that the vector representation may be better suited for presenting
the dynamics of uncertainty than triangles. Example 6 proves that
a combined approach (triangle, vector) would provide more infor-
mation for project planning than the traditional representation
alone. Moreover, as mentioned in the introduction, some earlier
studies on cognitive aspects of information visualization allow
us to think that the proposal may have some psychologically
based advantages over the traditional representation by triangles
[44,45].

In various optimization problems such as scheduling, supply
hain management, transportation, it is necessary to perform
athematical operations on fuzzy parameters. In most of those
roblems, addition and multiplication by a crisp positive number
re sufficient. In Section 3.4, we provide appropriate definitions,
ormulas, and examples of performing these operations in both
epresentations. In this regard, the vector representation is clearly
nferior to the traditional one. Although arithmetic of vectors as
iven by (21) and (32) is not particularly difficult, it involves
aking both the tangent and its inverse. This computational com-
lexity provides much more room for rounding error as compared
o the traditional version. The classic arithmetic performed on
riangular fuzzy numbers is more straightforward, since it in-
olves either three additions of crisp numbers (19) or three
ultiplications of crisp numbers (31). Thus, it appears advan-

ageous to perform mathematical manipulations on triangular
13
fuzzy numbers using their traditional representations, regardless
of how uncertainty data were gathered or graphically presented.
We provide the necessary direct formulae for the passage from
one representation to the other.

Furthermore, the vector representation also has some specific
features that could prevent it from being suitable in some situa-
tions. Among them, there is the property of non-linear changes in
the γ angle with the increase of the distance between the support
middle point µ and the most possible value m. This feature
will be very useful in project management when the neutrality
(neither optimism nor pessimism) of duration estimation means
that the middle value of the support is at the same time the
most possible value. However, it is not always the case. Therefore,
in practical applications, it seems to be reasonable to use both
representations. Combining their advantages will provide a fuller
picture of parameter uncertainty and its changes over time. We
have summarized the key advantages and weaknesses of our
proposal in Table 6.

Despite the concerns presented, this research approach pro-
vides a new perspective on how to visualize the uncertainty
of various parameters. Although we focus in this paper on the
project management context, exactly the same representations
can be used in any other area. Our proposal may be particu-
larly useful when uncertainty needs to be presented graphically
and explored by experts or decision-makers without a formal
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Table 6
Advantages and weaknesses of our vector representation.
Advantages Weaknesses

Extends the arsenal of visually representing uncertainty. May be better
suited for some groups of users in practical applications [46].

The new approach, which scientists and practitioners are not familiar with.
The need to implement it in existing software that is used for uncertainty
visualizations.

Strict equivalence with the traditional triangular representation, which
allows for interchangeable or simultaneous use. Easy transformations
between these representations.

Mathematical operations may be subject to a higher rounding error compared
to the traditional version.

May be better suited for representing some type of problem, for instance,
those in which the detection of the change in the tendency
(optimistic/pessimistic) is of the greatest importance.

The maximal absolute value of γ angle is smaller than 90◦ in practical
applications. This could be misleading when interpreting the magnitude of an
optimistic or pessimistic tendency.

Facilitates new research directions. Possible future applications relate to
fuzzy number ranking methods. Current solutions are strongly based on
geometrical features of the triangular representation.

The change in the γ gamma angle is not linearly dependent on (m − µ). The
vector direction is more sensitive closer to the vertical line x = µ This may
be misleading and makes interpretations more complex.
mathematical background. Extending the arsenal of visualization
techniques will allow the decision-makers to define, present, and
interpret the uncertain information more accurately. This, in turn,
should result in the achievement of specific goals more effectively
and efficiently.

The idea of using vectors to visualize uncertainty defined by
riangular fuzzy numbers provides further possibilities for scien-
ific exploration. For instance, one may try to search for vector
pecifications different from those presented in this paper. The
resented idea is applicable only to triangular fuzzy numbers,
ut future research can also be directed to develop other vector
epresentations for different fuzzy number types, e.g., trapezoidal,
-R, intuitionistic, or type-2. It may also be possible to discover
deas for vector-like representations pertaining to other forms of
ncertainty than the ones treated in this paper.
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