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1. Introduction

Agent movement simulations are used to model complex sys-
tems and observe their overall behavior based on local relations
and interactions of their components. Such a way of modeling
has a rich tradition and has been widely applied to explore the
dynamics of social as well as abstract systems. Studying segrega-
tion problems has greatly contributed to the development of this
trend.

This current article presents a novel conceptual framework
for a study of agent movement within relatively small social
groups. In general, the fundamental objective of this concept is
to find a stable spatial configuration of groups of agents. The
mutual attitudes of the agent pairs are known and represented
in the form of the so-called Moreno matrix. This matrix may be
defined by an expert or researcher in a flexible manner by means
of linguistic expressions that describe the degree of acceptance
or antipathy. The agents can constantly move across the plane
starting from a randomly generated layout. This movement is
driven by success. The rules controlling the movement and each
step payoff are also defined by natural language-like phrases for-
mulated according to an expert knowledge. Such expressions are
called linguistic patterns (LPs). The virtual social forces generated
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by these patterns exert an influence on agents and affect their
behavior.

In specific application problems, one has to create LPs that
reflect logical relationships and describe the desired state of the
examined system in reality. Since a formal description by classic
mathematical formulae may be difficult due to the information
uncertainty, the fuzzy sets and LPs appear to be well fitted to
this job. The determination of the appropriate patterns can be ob-
tained, for instance, by finding a consensus between knowledge of
different experts within the given field or in concrete situations.

This paper was inspired by works on modeling migration
behavior [1-3] and the initial concept of linguistic patterns (LPs)
proposed in [4,5]. Although the presented idea shares some as-
sumptions and properties similar to those of previous works,
there are several profound differences. The novelty and specific
distinctive features of our proposal that constitute a contribution
of this research are highlighted below.

- To the best of our knowledge, the LPs and linguistic vari-
ables, which are at the core of our study, have not been
previously used in this research area. This novel solution,
which allows in a flexible way to encode and apply expert
knowledge, made it possible to resign from rigid mathe-
matical relations that describe the agents’ behavior.

- In other studies, regular grids are usually used to model
migration behavior. Their particular cells specify possible
agents’ locations, which is a substantial restriction. In our
approach, it is possible to place agents at any point in an
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unconstrained plane. It is feasible thanks to exploiting an
analogy to physical attractive and repulsive forces.

- The resulting flexibility and the freedom of agents’ move-
ment allow for a significant extension of the proposed
approach. Our method goes far beyond the analysis of
agent behavior in the classical sense. It is, for instance,
possible to obtain the so-called scattered plots which is
unfeasible in classical migration models due to the men-
tioned limitations. Our approach enables the construction
and analysis of such scattered plots for a variety of criteria
and tasks. Thus, it can be used much more widely used in
economic and social practice than traditional techniques.
In this paper, the proposed idea is presented along with
simple exemplary models that show some of its possible
applications and highlight its potential flexibility.

- In the context of searching the space of possible solu-
tions to find the best one, the assessment criteria defined
in the form of LPs provide an additional advantage over
other methods. According to the axioms of fuzzy set the-
ory and multivalued logic, the proposed criterion of the
mean truth of LP fulfillment cannot exceed the value of
one for a specific solution. This feature is not available in
classic approaches. Therefore, when the maximum value
is obtained, one can be sure that there exists no better
solution. There can be, however, some other equivalently
good configurations, given specific LPs expressions.

The remainder of the paper is organized as follows. First, we
review the relevant literature that outline the background of our
proposal and highlight differences with other studies. Next, in
Section 3, we present our approach and explain its relations with
fuzzy set theory and concepts of LPs. Their application to define
our virtual forces and evaluation criteria are illustrated with
party participant configurations inspired by [6]. The following
section demonstrates the application of our methodology to clas-
sic migration simulations introduced by Sakoda [1] and Schelling
[2,3]. The final stable configurations generated by the proposed
LP-based method take the form of scattered plots. Therefore, in
Section 6, we show and compare them with solutions provided by
suboptimal eigenvector-based scattered plots, generated accord-
ing to the classic Drezner [7] idea. Then, we further discuss the
simulation results obtained in illustrative examples and provide a
broader scope of potential applications of our proposal’s potential
applications. In addition, we outline possible future extensions
and research directions. The article ends with concise conclusions.

2. Background and literature review
2.1. Agent-based modeling

Agent-based modeling (ABM) is still very popular, with new
approaches constantly being explored and developed in various
fields. For example, such techniques are currently being used
to model the dynamics of online social networks. An extensive
discussion on the use of agent-based methods in this area is
presented by Lymperopoulos and loannou [8]. Some of the recent
advances in modeling social phenomena are discussed in [9].
Castro et al. [10] reviewed more than 60 proposals of using
agent-based models to determine climate mitigation policies.
Agents are also employed in systems-of-systems analysis. Recent
developments in this area are described by Silva and Braga [11].

Other exemplary reviews on agent-based modeling concern
product lifecycle [12], collective intelligence [13], education [14],
decision making in manufacturing [15], sociotechnical energy
transitions [16], and even mosquito behavior and disease [17].
The ongoing pandemic led some researchers to also focus on this
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type of modeling technique, for instance, [18], and a review in
this field [19]. North [20] gives some theoretical aspects of agent-
based models along with the analysis of recent free software
environments that support this approach.

2.2. Moving agent-based modeling with crisp knowledge represen-
tation

A special case of ABM is moving agent-based modeling (MABM).
Since it constitutes the direct background for our proposal, we
provide a brief review of the key advances and the most impor-
tant research trends in this area.

The macrolevel analysis of social group behavior based on
interactions and local displacements of agents living on a check-
board was suggested by Sakoda [1]. In his concept, agents inhabit
cells of an 8 x8 checkboard. The mutual attitude for each pair of
agents can be defined as neutral (0), positive (+1), or negative
(-1). Because not all cells are occupied, in subsequent steps,
each agent can move to a neighboring free place where it would
feel better than at the location he left. The movements of the
individual agent in a given step are restricted to a 3x3 square
with the current agent position at the center. The feeling in a par-
ticular place is defined by valence, which is computed as the sum
of attitude indicators between the moving agent and all other
agents divided by the sum of distances between them. The main
objective of Sakoda’s analysis was to identify group formation
processes by analyzing various parameters of the model, partic-
ularly segregation and suspicion. The Sakoda concept represents
the trend in modeling the dynamics of social system dynamics
based on cellular automata (CA) theory. The proposed checkboard
model and the rules of agent interactions in the local environment
(Moore’s neighborhood in CA theory) clearly refer to the idea of
CA. The history, potential, and advantages of implementation of
this methodology in the dynamics of analysis of the social sys-
tems dynamics have been discussed, for instance, by Hegselmann
and Flache [21].

Schelling [2,3] tackled group behavior modeling in a similar
way, with a strong focus on segregation processes. Just as in
Sakoda’s study, the simulation of the group formation process,
with agents deployed on a regular grid, was based on the local
interactions and movements of agents within Moore’s neigh-
borhood (3x3). In basic experiments, the agents were divided
into two classes. The objective of the agents’ movements was to
increase the proportion of individuals in the agent’s own class
to foreign individuals in the new habitable location (Moore’s
neighborhood cell). The Sakoda and Schelling modeling concepts
were developed prior to CA computer implementations, so this
study involves only small populations and follows simple rules.

The development of computer modeling has boosted interest
in this research field. It resulted in a number of models and
computer programs that allowed free modification and analysis of
their parameters. Hegselmann and Flache [21] presented various
examples of the applicability of the Sakoda and Schelling analy-
sis. They also involved the possible implementation of different
parameter definitions to model social group formation processes.

In the spirit of CA, Kliiver and Stoica [22] presented a variety
of social group behavior simulations based on the definitions of
agents’ attitudes, specified by sociomatrices, also called Moreno
matrices [23]. The arrays allow for taking into account attitude
dynamics of different intensities, also those asymmetric. This
was a significant extension in comparison to earlier approaches
where only binary classification was possible. Kliiver and Sto-
ica [22] demonstrated the correlation between the dynamics of
the agents’ behavior on the CA grid and the matrix structure with
the Moore neighborhood size. They also proved a far-reaching
compatibility of this approach with the models based on neural
networks and genetic algorithms.
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Hegselmann and Flache [21] proposed the application of CA
as a tool for modeling and understanding social dynamics. They
used CA to illustrate the potential for extended implementation
of Schelling and Sakoda models. Beltran et al. [6] proposed a
model that allows the analysis of the behavior of a small group
of agents during a party held in a closed room. The movements
of agents are modeled by changing the cells on the grid, similarly
to CA models. The agent’s decision to move at a given time is
determined by the level of dissatisfaction with the agent’s current
position. Agents move to minimize the level of dissatisfaction
calculated as a function of the discrepancy between the actual
and desired distance between them. This indicator takes into
account concepts of personal and social zone distances derived
from sociology (Hall [24]).

The analytical perspective on group behavior dynamics based
on local interactions also prevails in the observation of pedes-
trian traffic on the streets. This approach is applied in modeling
evacuation procedures from public buildings. Differential games
are the main method used in such an analysis of agent mobility.
Hoogendoorn and Bovy [25] proposed a model of pedestrian flow
in which the movement of agents is determined by the respective
equations. They are based on physical parameters modeled as a
multimolecular system and empirical pedestrian behavior. In this
way, they determine the particular decisions that influence the
acceleration and direction of movement. Contrary to CA models,
here agents are constantly on the move, and their movement is
limited only by infrastructure parameters like the sidewalk width,
pedestrian crossings, etc. The application of a similar approach
to the analysis of crowd behavior during evacuation is presented
by Helbing et al. [26]. In such circumstances, the movement of
the crowd is primarily determined by the herd behavior. The
interactions between agents in the model are mainly physical,
so the movement is described by differential equations based
on precise physical parameters. The authors demonstrated the
applicability of that model to the analysis of facilities safety
design, such as the width of emergency cross-passes, the shape
and size of corridors, etc. Gao et al. [27] proposed a more recent
approach in this field that uses the classic agent-based simulation
system to evaluate urban management strategies. Most MABMs
use grids, but recently one can encounter more often less rigorous
approaches. For example, evacuation models [28] and pedestrian
studies in urban spaces [29] replicate actual physical traffic routes
along with relevant constraints and surrounding objects.

The models described so far demonstrate trends based on
analysis of the agent movement dynamics in a real, geographical,
or physical space. Similar analysis may also be applied in an
arbitrary or abstract universe. For instance, Moya et al. [30] tried
to understand the influence of terrorist attacks on elections in
Spain. In the proposal of Bin and Zhang [31], the movement of
agents takes place in the universe of degrees of loyalty to the group.
In this model, the simulation of group behavior consists in obser-
vation of agents’ attitudes towards the company’s policy on social
or economic incentives. The migration of agents in an abstract
space is analyzed by CA also in the works of Yu and Helbing [32]
and Helbing et al. [33]. The authors demonstrated a significant
impact of agent migration opportunities on the formation of
separate groups of cooperators and defectors (in the prisoner’s
dilemma game) and the self-organization of cooperative clusters
at the macrolevel. Another approach in this trend is proposed
by Kowalska-Styczen & Sznajd-Weron [34]. The authors showed
how the movements of agents in the space that simulate the
locations of various sources of information affect the efficiency
of person-to-person communication.
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2.3. Soft knowledge representation in agent-based modeling

The models discussed in the previous subsections are based
on knowledge represented in strict mathematical formulas and
physical relations that involve crisp calculations. As our method
uses soft knowledge representations, recent developments in this
area are covered in this subsection.

There exists a relatively small, but systematically increasing,
number of studies that include the representation of imprecise
or rough knowledge in general ABM. In an early study, Ma &
Nakamori [35] employed a simple fuzzy linear quantification
method to represent and aggregate data on the properties of
objects for Kansei Engineering purposes. Their ABM involved both
objective and subjective information. The proposal to merge ABM
with fuzzy logic was also presented by Ilandoli et al. [36] in
the context of individual and collective learning processes. They
represented agents’ opinions as fuzzy variables and combined
them using the ordered weighted averaging operator [37].

Interesting concepts of incorporation of fuzzy relations to ABM
in social simulations such as matchmaking were discussed by
Hassan et al. [38]. Their ideas were further extended to model
friendship dynamics in [39] and lately in [40]. Martinez-Miranda
and Pavén [41] proposed using ABM simulations of human be-
havior to create effective and efficient work teams. They applied
soft knowledge to determine and represent the agent emotional
state and trust with respect to its team members. Other mod-
els regarding the workforce that include fuzzy approaches were
also developed in a different context by Raoufi et al. [42], Kedir
et al. [43], or most recently in [44].

Some of the latest developments that blend soft knowledge
with AMB take advantage of fuzzy cognitive maps. This notable
trend is presented, for example, in the works of Mei et al. [45],
Giabbanelli et al. [46], or Mehryar et al. [47]. Recently, one can
also find AMB approaches focused on decision making that em-
ploy 2-tuple fuzzy variables [48,49], or the fuzzy logic controller
(FLC) [50].

While the literature using soft-knowledge-based modeling in
ABM is growing in size and importance, its application to MABM
is scarce. Among the few works in this area, there are those of
Sharma et al. [28] as well as Yild iz & Cagdas [29]. Both works
present models of moving agents in real physical spaces, that is,
closed rooms and urban spaces, respectively. In these proposals,
the crisp rules and formulae are used in conjunction with the soft
knowledge. The authors applied the same core idea of the FLC
concept [51] to take advantage of the soft knowledge in some
components of their models. In general, the idea of FLC consists in
creating a system of rules that control the behavior of objects over
time. These rules describe the relations between fuzzy variables
that represent the input and output of the mapped system. Such
relations are developed on the basis of expert knowledge and/or
observations of the system behavior. The rules take the form of a
set of specific if-then phrases. The knowledge represented in this
way allows one to infer the shape of the response to a given set
of input parameters.

Sharma et al. [28] used the FLC framework to generate the
agent’s rate of movement towards the exit in the room evacuation
process. This parameter is generated in the model based on the
panic level, stress, physical weight of the agent, and its distance
from the exit. The final agent movement process is modeled by
a complex mechanism that combines a genetic algorithm with a
neural network. The resulting movement direction also takes into
account physical constraints in the room.

In turn, Yild 1z & Cagdas [29] proposed a MABM to simulate
pedestrian traffic in urban space. In this approach, the FLC con-
cept was used to determine the attractiveness of architectural
objects in the environment. The level of attractiveness generated
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Table 1
Agents’ mutual attitudes.
Agent number 1 2 3
1 X Positive Big (PB) Negative Big (NB)
2 X X Positive Medium (PM)

the force of attraction that acted on moving pedestrian agents.
The rules for controlling this force included fuzzy levels of vari-
ables such as distance, heating, population, and illuminance. The
movement of each agent was also subject to forces resulting
from their current geometric position relative to other agents
and possible obstacles. These other forces are calculated in the
model according to simple, strict geometric and physical rules
represented as crisp mathematical formulas.

The described above works take advantage of some soft knowl-
edge representation in the form of FLC that is one of many
components of MABM, however, they do not involve any LPs.
Two features that seem to particularly distinguish these works
from the classical approaches are the free geometric space of
movement and the flexibility in formulating rules and relation-
ships that define agent movement. Our proposal fits generally
into the trend, as it combines properties of traditional moving
agent models and less formal expert knowledge given in the form
of natural language-like expressions called LPs. In contrast to
using soft knowledge to only selected relations that affect agent
movement ( [28,29]), LPs in our framework control the behavior
of agents completely by generating all virtual forces. Unlike in the
classical FLC approach, where agent’s movement parameters are
defined at each step, LPs are a description of the desired state of
the whole system. The virtual forces acting on the agent in our
framework are directed to decrease the distance of the system
from this ideal state at each step.

The concept of LPs was initially introduced by Grobelny [4,5].
In principle, an LP is a logical expression to which a particular
degree of truth can be ascribed. The LP can act as a quality crite-
rion in an appropriately defined system. Grobelny [52], Raoot &
Rakshit [53], and Grobelny & Michalski [54] applied LPs to object
layout optimization. In the Grobelny [55] study, LPs were used to
obtain the hierarchy of objects based on fuzzy pair wise compar-
isons. The possibility of using expressions similar to natural lan-
guage in the form of LPs enables their application to optimization
problems with imprecise knowledge. The use of LPs with fuzzy set
relations along with the relaxation of certain moving constraints
makes our proposal unique and potentially interesting for further
scientific and practical research. To the best of our knowledge,
there are no proposals that include both linguistic variables,
multivalued logic, and LPs in this area. In the next section, we
describe our concept in detail and provide the mathematical
formulas necessary to understand its implementation.

3. The concept of linguistic patterns and virtual force

The approach proposed in this paper involves the implemen-
tation of LPs in the modeling of success-driven agent movements.
The following example illustrates the essential components of the
LP application to MABM. It is inspired by the idea put forward by
Beltran and Salas [ 1] regarding simulations of party attendees’ be-
havior. In this scenario, three agents initially found themselves in
arectangular room where the party takes place. The configuration
is presented in Fig. 1.

After the official ceremony, the agents begin to move from
their initial random positions. Their movements depend on known
relations that reflect their mutual attitudes. They may be ex-
pressed in a way shown in Table 1.
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Fig. 1. Initial position: 3 agents with distances presented as a percentage of
the maximum distance, i.e., the length of the longer side of the room. The
dimensions of a single cell in a grid amount to 10% of the maximum distance.

The expressions presented in Table 1 are linguistic exemplifi-
cations of the symmetric Moreno matrix (Kliiver and Stoica [22],
Moreno [23]). They simply mean that agents 1 and 2 like each
other very much, agents 1 and 3 dislike each other very much,
and agents 2 and 3 like each other moderately. In circumstances
such as the said party, the pairs liking each other would tend to be
close to one another, while the resentful ones would prefer to stay
away. Therefore, we may use the following statements to describe
the configuration presented in Fig. 1 and its future dynamics. If
like the person, the distance between us is small and If I dislike the
person, the distance between us is large. Such statements may be
expressed in a slightly more formal manner as patterns presented
in (1) and (2):

P1: IF Attitude(i, j) is POSITIVE, THEN j

is at a SMALL_DISTANCE from i (1)
P2: IF Attitude(i, j) is NEGATIVE, THEN j
is at a LARGE_DISTANCE from i (2)

Both patterns define the attitude-desired distance relationship
for each pair of agents analyzed. The difference between them
is related to the nature of their mutual impact. Pattern (1) cor-
responds to attraction, whereas pattern (2) relates to repulsion
between agents.

These formulas are examples of LPs that, in the context pre-
sented, constitute the agents’ wellbeing criteria. The levels of such
wellbeing depend on the respective criteria values. They need
to be determined for each agent in a given configuration. The
values can be specified as the degree of truth for a particular
pattern. Practical calculations can be based on the formula for
determining the truth of the implication proposed by Lukasiewicz
(Grobelny [55]). If t(I) and t(r) denote the degree of truth on the
left and right side of the implication, respectively, then the truth
value is computed by formula (3).

Truth(P1) = min[(1 — t(I) + t(r)), 1],
only for non-negative attitudes between agents i, j. (3)
The same formula applies to Truth(P2), which is calculated
only for negative attitudes between agents i, j. It may be noticed
that (3) is a kind of generalization of the truth value table related

to a classic implication. There are more such generalizations pos-
sible, e.g., those discussed by Dubois and Prade [56]. Certainly, the
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Membership value POSITIVE/NEGATIVE(x)
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Fig. 2. Exemplary definitions of truth values for the patterns (1) and (2)
expressions (POSITIVE or NEGATIVE) for three levels of linguistic expressions
(PS — POSITIVE_SMALL, NB — NEGATIVE_BIG, etc.).

determination of the truth value according to formula (3) requires
t(l) and t(r) to be specified. The theory of fuzzy sets provides
simple and intuitive tools for that purpose (Zadeh [57,58]). For
example, t(I) for patterns (1) and (2) denotes the truth value in the
linguistic expressions ‘Attitude(i, j) is POSITIVE’ and ‘Attitude(i, j)
is NEGATIVE'. We can treat the linguistic expressions presented
in Table 1 as fuzzy sets (singletons) with appropriate values of
the membership function. Then, these values of the membership
function may be regarded as degrees on truth of the left side
of patterns (1) or (2). An illustration of this approach is given
in Fig. 2. The linguistic expressions in Table 1 are arranged only
on an ordinal scale and the exact distances between successive
items are unknown. However, the assumption of a proportional
increase of the truth value for successive phrases listed on this
scale seems reasonable. It is especially true and justifiable when
additional information on how such expressions are perceived by
humans is not available.

The concept of a possibility proposed by Zadeh [28,29] is a
generalization of a simple, direct assignment of the truth value for
linguistic expressions. This measure allows for the determination
of truth of the LP fulfillment using an expression represented
by a fuzzy set (e.g., a fuzzy number) in a given universe. The
aforementioned criterion may be formally expressed as follows.

Truth(l) = POSS(Attitude(a, b) is POSITIVE|Attitude(a, b) is A).
(4)

If one defines the expression Attitude(a, b) as a linguistic
variable represented by fuzzy sets in the universe of discourse
X = (x1, ..., Xp), POSITIVE(x) and A(x) in (4) represent this real-
ization of the variable as fuzzy sets in this universe, then the truth
is computed according to formula (5):

Truth(l) = max(mxin(POSITIVE(x), A(x))). (5)

Formula (5) represents the consistency of two expressions
POSITIVE and A, which are the pattern and a specific realization
for a given pair, respectively. In other words, (5) exhibits the
possibility of the fact that A is POSITIVE. By analogy, we can
define the truth value for the NEGATIVE(x) case. Fig. 3 presents
exemplary definitions of LPs from Table 1 expressions. We also
illustrate how the calculation of the possibility measure Truth(l)
works for fuzzy representations of linguistic values. In Zadeh’s
original proposal [57,58], this measure determines the degree of
truth of the fulfillment of a given criterion by specifying its level
of magnitude. The criterion can also be expressed as a linguistic
expression.

Fig. 3 shows a generalization of the approach presented in
Fig. 2 where the degree of truth is directly determined. The
particular significance of this extension lies in enabling experts to
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specify fuzzy sets that represent linguistic expressions with their
concrete spaces of variability, characteristic for a given context.
If we assume that the linguistic values from Table 1 are defined
in the form of fuzzy sets in the numerical space of 0-10 ratings
(e.g., based on interviews), then Fig. 3 shows how to determine
the value of Truth(l) for a given PM(x). Here, we assume a linear
membership function for POSITIVE(x).

Although Fig. 3 defines LPs using fuzzy sets in an artificial
numerical universe, the same could be performed using more
objective information. For example, universe X may represent
the number of interpersonal contacts in a given period, or the
proportion of common views, etc. Then, Truth(l) is simply the
value of the POSITIVE(x) function for a given x value.

The determination of the truth value for the right side of the
patterns t(r) requires that appropriate functions be defined for
the following statements: ‘(j) is at a SMALL_DISTANCE from i’ and
Yj is at a LARGE_DISTANCE from i". Examples of such definitions as
fuzzy sets are shown in Fig. 4.

In this case, LPs are represented as fuzzy sets defined in the
universe of distances determined as percentages of the maximum
distance. Although the shape of the function is intuitive, it can
reflect objective knowledge of the human perception of distance
in a given context. For example, such an objectified knowledge
may refer to the notions of personal and social spheres (Hall [24],
Beltran and Salas [6]).

The definitions described above allow for the determination of
truth values for patterns (1) and (2). Therefore, the appropriate
calculations can be performed for each agent from the party
presented in Fig. 1. Let us consider the situation of agent 1. To
assess his well-being, we should use pattern (1) to specify the
relation with agent 2 because the attitude is positive, and pattern
(2) to obtain the relation with agent 3 as the attitude is negative.
Based on Table 1, Fig. 2, Fig. 4, and using pattern P1 (1) to assess
the relationship with agent 2, we arrive at the following results:

t(l) = 1, because the attitude value is PB (POSITIVE_BIG) and
the degree of truth for the left side of pattern (1) (POSITIVE
Attitude) is 1.

t(r) = 0, because the truth value for the right side of pattern
(2) (SMALL_DISTANCE) for the distance between agents 1 and 2
(greater than 0.2) is 0.

Then,:

Truth_P1(1,2) = min (1 -1+0),1) = 0.

Similarly, using pattern (2) for the assessment of the relation
with agent 3, the results are as follows:

t(l) = 1, because the attitude value is NB and the degree of
truth for NEGATIVE is 1.

t(r) = 0.75, because in Fig. 4, the distance of 0.15 between
agents 1 and 3 is DISTANCE_LARGE to the degree of 0.75.

Therefore,

Truth_P2(1, 3) = min ((1 - 1+ 0.75), 1) = 0.75.

The total level of satisfaction of agent 1 with the configuration
shown in Fig. 1 can be assessed by calculating the average of the
truth values for both patterns. In this example, it is 0.38. Chang-
ing the location of agents may improve this evaluation. Moving
agents in directions that cause an increase in the truth values of
the patterns appears to be reasonable to achieve this goal. It can
be assumed that agent 1 senses a kind of unique virtual attraction
or repulsion to agents 2 and 3 at a given moment. Feelings are
proportional to the truth levels of patterns (1) and (2). Such an
approach is a simplified analogy of the concept of social force
described by Helbing [26]. The vector of the force (VF) acting
on agent 1 lies on a straight line that connects agents 1 and 2.
It has a length of VF(1, 2)* = 1 - Truth_P1(1, 2) = 1 and is
directed towards agent 2, which denotes its attractive nature. Let
us analyze the force of magnitude VF(1, 3)” = 1 - Truth_P2(1, 3).
In the position presented in Fig. 1, the vector length is 0.25 and
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Fig. 3. Graphical illustration of possible definitions of linguistic variables in an artificial numerical universe of discourse and calculation of Truth(l) according to Eq. (5).
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Fig. 4. The pattern expressions LARGE_DISTANCE and SMALL DISTANCE are
interpreted as fuzzy sets in the universe of the maximal distance percentages.

lies on the straight line connecting agents 1 and 3. The direction
of this force is opposite to the position of agent 3. This means that
the force has a repulsive character.

Assuming that the agent’s response to the force being felt is
motion, the displacement distance in one step is proportional
to the magnitude of this force. Since the maximum force value
between a pair of agents is 1, the appropriate parameter s may de-
fine the physical distance of the displacement. It can be expressed
as a percentage of the longer side of the rectangle. It may also be
reasonable to associate the value of s with a physical limitation of
displacement, e.g., possible speed. Taking into account both forces
and assuming s = 0.1, the agent moves in the direction that is
the sum of both vectors, and ultimately reaches a new position
denoted as 1’(«<-2%*, <-37) in Fig. 5.

The precise determination of successive positions of the agents
consists of performing simple calculations based on geometrical
dependencies. For example, to obtain the geometric position of
agent 1 after acting with an attracting force between agents 1
and 2, i.e. VF(1, 2)* one needs to do the following.

(a) Calculate the distance (DIST) between agents 1 and 2 for
their current coordinates (x1, y1) and (x,, ¥,) according to

(6):
DIST, 2 = v(X2 — 212 + (2 — y1 )2, (6)

(b) Calculate new coordinates for agent 1 (x/](gﬁ), y;(&ﬁ)).

Xo—x M(e2t) ™
1 — 2 X1 — 3 —
Since cos (@) = DIST,. 2) VT 27 and sin (@) =
y -1
yoy1 _ 1(=2h) ;
DISTG 2) = SVR(L 2] where « is the angle between the

. . . . % .
positive horizontal axis (x) and vector VF (1, 2)*, we arrive
at the direct formulas (7):

X2 — X1
X =x; +5-VF(1, 2)t. ———,
1(«<2%) 1+ ( ) DIST,,. ) )
Y2 — W1
! = s VE(1, 2)t. =—— ",
Yi(e2ty =N + ( ) DIST,1. 5

These computations must be performed for all links of each agent.
The final position in a given step is the vector sum of these partial
displacements. In the same way, the displacement characteristics
of each agent are computed with respect to the appropriate
criterion represented by an LP.

The presented idea of the individual agent behavior can be ap-
plied to all agents. Thus, each of them, at a given moment, can see
others and perform the same calculations. As a result, according
to the rules presented, appropriate displacements take place in
consecutive steps. It eventually generates dynamic movements of
agents. Such an approach derived from the party example may
reflect the behavior of small social groups.

It can also be observed that the distance covered by an agent
in a single step in the simulation depends on the number and
strength of relations with other agents. Then, taking into account
the forces coming from all agents, the displacement of the agent
being analyzed in a single step should not exceed the total values.
Therefore, in the proposed algorithm (Appendix A), a quotient of
s by n is used, where n is the number of agents.

Once this procedure is completed for each agent in a given
step, the mean truth value for the patterns of all agents is de-
termined by formula (8). It can be interpreted as a measure of
satisfaction for the entire group of agents in a given configuration.

Mean_truth

Doy, jmisn TrUth_PA(E, j) 4+ Yy gy Truth_P2(k, 1) ®

p

In the above formula (8), m is the number of agent pairs with
non-negative attitudes, u - the number of pairs with negative
attitudes, p is the number of all agent pairs, and m + u = p. In
general,p = # where n is the number of agents. Since for pairs
of unrelated agents t(I) = 0, the truth values for patterns P1 and
P2 equal 1. In situations where there are a considerable number
of unrelated pairs of agents, those ones would artificially increase
the mean truth. Therefore, when calculating the mean truth, it
is reasonable to take into account only the pairs of agents for
which t(I) > 0. In this way, our indicator will only refer to agents
remaining in any relation with others. In this case, the value p
denotes the number of only linked agent pairs.

The movement of agents is finished when each VF(i, j) for each
agent amounts to a zero vector or after performing a specified
number of steps. This concept can be described in the form of
a simple algorithm. The pseudocode is provided in Appendix A.
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s-( VF(1,2)* + VF(1,3)" )

D 1'(<2+, «37)

Fig. 5. Vector representation of virtual forces and the agent 1 movement step in the configuration from Fig. 1. Notation 1’(«-2%") depicts the position of agent 1, if
only the attractive force from agent 2 is taken into account; 1'(<-37) denotes the location of agent 1 determined only by the repulsive force from agent 3; 1’(«<-27,
<37) is the final position of agent 1 resulting from forces generated by both agents 2 and 3.

In addition to the principles presented above, the possibility of
defining the radius r to determine the range of vision for all
agents was also introduced. Each agent examines the relations
only with those agents who remain within a distance shorter than
r, which is expressed as a percentage of the maximum distance.
In our model implementation in Delphi, agents are graphically
represented by numbered crosses or squares of equal sizes. The
analyzed area is defined as a rectangle of any size and in any unit.
The distances within such an area are expressed as percentages of
the longer side of the area. The step coefficient s that represents
the distance of the agent’s dislocation in a single step of the
simulation in response to VF of length 1, is also defined as a
percentage of that maximal distance.

Given defined patterns and variables, the simulation of the
agents’ movements always starts with a random distribution on
the plane. After the random agents’ locations are generated, the
distances between each pair are calculated, allowing the compu-
tation of the truth values. The application tracks the movement
of selected agents from their initial positions to end positions, as
shown in Fig. 6a, and records the Mean_truth values for all agents
in each step (Fig. 6¢).

The figures presented demonstrate that, in the discussed case,
the system reaches the complete truth for the defined patterns
and their parameters in approximately 45 steps. However, it is
easy to conclude a priori that such a simple implementation of
the proposed concept shall not be considered universal. It can
be noted that if there are only positive values in the attitude
matrix (Table 1), then the optimal solution would result in more
or less dense clusters. Such a behavior is observed regardless
of the level of these positive values, and the final configuration
depends on the definition of the distance adopted in P1. An
alternative optimum result would involve all agents located at
one point. As it is considered to be rather unlikely behavior, the
proposed framework and its application were supplemented with
the possibility of introducing additional, reasonable patterns and
virtual forces they generate. The concepts and basic properties of
our model are further discussed on the basis of several illustrative
examples.

4. Impact of model parameters on agent behavior

The presented framework provides flexibility in formulating
both input data and agent behavior rules. The influence of key
parameters on the formation of the resultant configurations of
agents can be conveniently analyzed using examples. It is con-
venient to select problems in which reasonable or optimal stable

layouts can be predicted in terms of accepted criteria or patterns.
For this purpose, two test matrices with specific structures were
created to represent the relations between agents.

It was assumed that for each pair of agents, the degree of
mutual positive relationship reflected the number of daily per-
sonal contacts such as emails, phone calls, conversations, etc. The
number of interactions ranged from 0 to 10. It was also assumed
that the truth degree of t(I) for P1 is defined as shown in Fig. 7.
It is linearly dependent on the number of contacts (Fig. 7a), or
the truth of any number of contacts larger than O is taken as
1. It should also be noted that in this structural context, the
relations and their degree of truth need not be strictly dependent
on mutual personal attitudes but rather on the more substantive
cooperation of the agents.

The two exemplary structures are shown in Fig. 8. Degrees
of truth t(l), presented in green, were calculated according to
the function in Fig. 7a for randomly assigned contact numbers.
When the function in Fig. 7b is used, the truth value will be
equal to 1. Analogously to the party example, one can analyze
the spatial behavior of agents initially placed at random locations,
in particular, their final stable configurations. By maximizing the
truth value of pattern (1), we should obtain structures in which
pairs of agents with stronger relationships are closer to each
other. One can also notice that similar criterion is also used to
search for optimal solutions in facility layout problems (Grobelny
& Michalski [54]).

The dynamics of agent movement and the resulting layout
configuration for the P1 pattern will be shaped by the perception
of SMALL_DISTANCE. Fig. 9 shows a simple formulation of the
truth t(r) for the SMALL_DISTANCE expression in the universe of
Percent of maximal distance.

This definition makes it possible to reset the strength of at-
traction for each pair of agents if the distance between them is
less than the afuzzy value. Consequently, using this value, the
model can adopt the concepts of social and personal proximity
proposed by Hall [24]. They were initially implemented in the
context of MABM by Beltran et al. [6]. These concepts take into
account the dissatisfaction of people resulting from strangers
crossing a certain distance in interpersonal relationships. They
can be understood as a small protective sphere that an organism
tries to keep between itself and others (Hall [24]). Depending
on the context, culture etc., the radius of this comfort zone is
estimated to be 1.5-4 ft (personal distance) and 4-12 ft (social
distance).

A series of simulations of agent behavior were run with the
SMALL_DISTANCE definition from Fig. 9 and setting afuzzy = 0.05,
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Fig. 6. Agents’ movement patterns from the configuration shown in Fig. 1. The definitions of the truth value for the patterns correspond to Figs. 2 and 4. The grid
size is 0.1 (10% of the maximal length). Parameter s = 0.05 (5% of a maximal distance) (a) Movements towards the stable configuration. Locations of agents marked
by every 10" step; (b) The final stable arrangement; (c) Dynamics of the Mean_truth value in subsequent steps.
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Fig. 7. Two definitions of the degree of truth in relations between agents.

bfuzzy = 0.1. The relationships between agents were taken from
the structures in Fig. 8a and 8b. We applied a linear function to
assess the value of t(l) (Fig. 7a), and set the value of s between
0.01 and 0.1. The highest values for Mean_truth in the resulting
configurations were obtained for s = 0.05, yielding layouts
similar to those shown in Fig. 10. All agents were clustered in a
small area around the center of the plane such that the distances

between them were essentially proportional to the t(I) values that
represent their relations (Fig. 8a).

Note that in the resulting configuration in Fig. 10a, the antic-
ipated and desirable proximity of the agents’ locations is main-
tained (Fig. 8a). However, there are also some close accidental
neighborhoods, for example, between unrelated agents 3 and 9
or 5 and 1. For the relationships in Fig. 8b, the resulting layouts
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Fig. 8. Two exemplary structures of t(I) relations with easily predictive solutions. (a) Circular arrangement; (b) Grid arrangement.
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Fig. 9. Schematic definition of a SMALL_DISTANCE expression in the universe
of Percent of maximal distance.

(Fig. 10b) are even denser. This is because the length of the
personal/social distance represented in pattern P1 by afuzzy only
affects the distance of related agents. Since agents defined as
mutually neutral do not interact with each other during their
movements, it seems reasonable to propose an additional pattern
that incorporates the notion of social or personal distance for
them. We propose to construct this LP in the following way (9):

P3: IF Attitude(i,j) is NEUTRAL THEN Distance(i, j)
is PERSONAL/SOCIAL_DISTANCE (9)

The scheme to determine the truth value of PERSONAL/
SOCIAL_DISTANCE is defined in Fig. 11. As in the example shown
above, the membership function reflects the degree of truth
of achieving the personal distance with respect to the distance
between a pair of agents. Likewise in pattern P2, it generates a
corresponding repulsive virtual force, proportional to the deficit
of truth in pattern P3 (9).

In the developed implementation, afuzzy and pd/sd can be set
independently. The afuzzy parameter is equivalent to personal
distance, but it is only applicable to agent pairs that are in a
relationship according to the P1 or P2 patterns. The P1 pattern
generates an attractive force (P2 - a repulsive force) only until

a pair of agents reaches a distance with the value of afuzzy. In
contrast, pd/sd creates pattern P3 that is applicable only to pairs
that are not connected by any relation. P3 generates a repulsive
force until the unrelated agent pair reaches a distance of pd/sd.

Another simulation experiment conducted included the third
pattern (9). In this modified approach, pd/sd was set to be three
times greater than afuzzy. It reflects the assumption that unre-
lated agents should rather remain at a social distance that is about
three times the personal distance. The value of pd/sd set here
was inspired by the concepts of personal and social distances
presented in the work of Hall [24]. The authors claim that the
social distance of approximately three times greater than the
personal one is statistically desirable. It applies to people who are
not in a relationship with each other.

The resulting layouts were qualitatively different from pre-
vious simulations. Fig. 12 demonstrates these configurations of
agents that achieved complete satisfaction with Mean_truth = 1.
The simulation involved pattern P3 with pd/sd = 0.15. It started
with the same random agent layouts as in previous experiments
shown in Fig. 10. All other parameters were unchanged. The final
Mean_truth value for pattern (P3) is recorded and can be included
in the overall Mean_truth evaluation. Figs. 12c and 12d illustrate
the dynamics of Mean_truth values for patterns P1 and P3.

The Mean_truth value for P3 can be treated as a separate
measure or quality criterion of a given configuration. It can also
be appropriately combined with Mean_truth for P1 and/or P2. The
definition of truth shown in Fig. 7b allows us to evaluate attitudes
or relations in binary terms (1-0, true-false). The described ex-
periments (afuzzy = 0.05, bfuzzy = 0.1, pd/sd = 0.15, s 0.1)
demonstrate the surprising reasonable dynamics of the presented
approach. The final layouts obtained for the tested relationship
structures (Fig. 8 with t(I) = 1 for each link) are shown in Figs. 13a
and 13b.

In both examples, the resulting layouts preserve the desired
structure of agent proximity and form very regular patterns. The
dynamics of changes in truth values for patterns P1 and P3 are
shown in Fig. 13c and 13d. Both approaches similarly achieve a
stable configuration within approximately 25 simulation steps,
reaching full truth for pattern P1 and a truth value of 0.98 for
pattern P3.
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Fig. 10. Agent configuration in experiment 1 with t(l) values for the relations (afuzzy = 0.05, bfuzzy = 0.1, s = 0.05). Mean_truth = 1 (left and right). (a) Circular

link structure; (b) Grid link structure; (c¢) Mean_truth value dynamics.
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Fig. 11. Schematic definition of PERSONAL/SOCIAL_DISTANCE (pd/sd).

5. Segregation examples

The proposed method of modeling the movement of agents
based on a party example may seem specific and of limited
practical use. However, its flexibility, resulting from the freedom
to define patterns and their parameters, gives many more possi-
bilities. For example, it seems that the proposed method can be
applied to model the dynamics of many social processes deter-
mined by mutual attitudes of agents. For this purpose, Sakoda [1]
proposed a social interaction checkboard model, which allows
us to analyze the movement of agents on a regular grid. In the
Sakoda model, members of two groups live on a checkerboard.
They have positive, neutral, or negative attitudes towards each

10

other, called valences. These values are defined by integers. Indi-
viduals have the opportunity to move to empty cells in their 3x3
neighborhood. If there are no empty cells, an individual can jump
over one cell. Migration is always local or is allowed only within
certain limits. Individual i uses the migration option to move to
locations where (10) is maximized.

n

Vi

. (10)
i=1, j=1(jeP) (dizj)“’
In formula (10), V;; denotes the valence of individual j for individ-
ual i, P is the set of all individuals when not all cells are occupied,
d is the Euclidean distance between i and j, and w determines how
strongly the valences are discounted by distance. In this model, all
agents can see each other. Sakoda’s world is an 8 x8 checkerboard
occupied by two groups, each with 6 members. Members of one
group are represented as squares, and members of the other
group are represented as crosses. Sakoda analyzes different com-
binations of attitudes. He calls one of them segregation, another
suspicion. These attitudes are shown in Table 2.

Schelling [2,3] proposed a different approach to segregation.
The concept of his model differs from Sakoda’s approach in that
agents act only on the basis of local observations that involve at
most eight nearest neighbors. The number of neighbors to whom
the agent has a positive attitude determines the satisfaction with
a given location. The agent may decide to move to the nearest
free cell on the grid if the number of positive neighbors at the
new location is greater than this number at its current location.
The relations for this segregation model are included in the last
column of Table 2.
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Fig. 12. Final layouts for agents with parameters from Fig. 10 with added pattern P3. (a) Circular link structure; (b) Grid link structure; (c) (d) Mean truth value
dynamics for the patterns P1 and P3 for the circular and grid link structure, respectively.

Table 2
Attitude combinations for suspicion and segregation models.

Attitude Sakoda suspicion Sakoda segregation Schelling segregation

Squares Crosses Squares Crosses Squares Crosses
Squares 0 -1 1 -1 1 0
Crosses —1 0 -1 1 0 1

The solutions of the original research of Sakoda and Shelling
are schematically shown in Fig. 14. Analysis of the above models
from the perspective of LPs and virtual forces required the de-
termination of appropriate model parameters. In the proposed
implementation, it is necessary to determine the appropriate
agentvisibility, that is, the distance within the range of which
patterns and generated forces are exercised. Such an approach
is a type of local environment estimation in regular grid-based
models. In this approach, each agent can analyze patterns and
is subjected to forces only inside a circle with a radius equal to
the visibility range. Of course, the corresponding truth values for
patterns are calculated only with respect to this range. Patterns
P1 and P2 are, respectively, involved instead of formula (10).

To examine the behavior of agents whose attitudes are defined
similarly to the Sakoda and Schelling models, a value +1 or -1 in
Table 2 was assumed to indicate compliance with patterns P1 and
P2, respectively, to the degree of 1 (t(l) = 1).

11

Fig. 15 shows the corresponding fuzzy definitions of distances
used in the analyzed patterns. There were 10 experiments con-
ducted for the matrix corresponding to the suspicion and segre-
gation models. The experiments involved 36 agents. The purpose
of this study was to test the behavior of agents with attitudes cor-
responding to Sakoda models with four different visibility ranges
(r = 0.1, 0.3, 0.5, and 1). For each r, the displacement process
started with the same random layout of agents. The resulting
configurations with the highest Mean_truth(P2) values are shown
in the screenshot excerpts displayed in Fig. 16.

A direct comparison of the results obtained in this experi-
ment with the model results in Fig. 14 is not possible, but some
qualitative observations can be made. In general, agents clus-
tered into groups with individuals neutral towards each other.
Assuming that agent mobility is based on global observations
(r = 1), the resulting model will predict the formation of clearly
isolated groups, similar to the original solutions in a regular grid.
These groups are somewhat more concentrated in the case of
segregation, which is the result of attraction forces generated by
the LP used in this case. Fig. 17 presents the simulation results
for Schelling’s model (Table 2, column 3). Simulations were per-
formed for the same values of r as for the Sakoda models. Since
the configuration in all runs for r = 0.5 is the same as for r = 1,
it is not presented in the figure.
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Fig. 13. Best final layouts of two cases analyzed in Fig. 8 with all truths of links t(I) = 1. (a) Circular link structure; (b) Grid link structure; (c) (d) Mean truth value

dynamics for patterns P1 and P3 for circular and grid link structure, respectively.

Although, as in the previous example, a direct and precise
comparison of the results of our approach with those obtained by
Schelling on a regular grid (Fig. 14) is not possible, a qualitative
analysis is feasible. Assuming that the mobility of agents is based
on local observations (r = 0.1, 0.2, and 0.3), the resulting con-
figuration predicts the formation of increasingly isolated groups.
Similarly as in the original, regular grid model. In each case,
the model reaches a stable configuration in 40-70 steps. Fig. 18
demonstrates the dynamics of the mean truth value in the types
of relations studied, under the assumption that all agents can see
each other (r = 1).

In the experiments presented above, the agents moved ac-
cording to the established patterns with fixed parameters. The
fundamental element that determines the achievement of a stable
configuration is the assumed perception of the distance defined
in each pattern. To qualitatively illustrate the importance of the
assumed perceived distance parameters, the effect of a radical
change in the parameter pd/sd on the stable configuration shape
is shown in Fig. 19. As mentioned above, the parameter pd/sd
defines an acceptable distance between individuals in different
social situations. In this sense, it can be implemented directly in
the party scenario described above.

The analyzed segregation models are related to social groups
migrations, where a direct interpretation of pd/sd in its literal
sense is not applicable. However, it can generally be assumed that
the relation between the afuzzy and pd/sd parameters describes to
some extent the unified us-them attitudes in the analyzed group
of virtual agents. Using Schelling’s model of relations (Table 2, col-
umn 3), simulations were performed for 72 agents. They started
from the same random layout and situation where agents do not
tolerate the proximity of strangers.

12

The pd/sd value was assumed to be 4 times greater than afuzzy.
In the second experiment, the opposite was assumed: the pd/sd
value was twice lower than afuzzy. Such a relation may reflect the
actual curiosity or openness of some social groups. Fig. 19 shows
the resulting stable virtual community configurations, assuming
that agents can see 20% of the environment with (r = 0.2) and
100% (r = 1), respectively.

Although it might not be noticed at first glance in the figure
presented, the structures resulting from different values of pd/sd
are qualitatively entirely different. This effect of the pd/sd param-
eter on the results consists in a clear variation in the homogeneity
of the groups formed. In parts (a) and (b) of Fig. 19, where high
values of pd/sd were applied, the groups are highly homogeneous.
They consist exclusively of squares or crosses. In parts (c) and
(d) of Fig. 19, which depict results obtained with considerably
lower value of the pd/sd parameters, mixed groups are formed.
An individual group includes both squares and crosses.

The dynamics of the mean truth value (Fig. 19e) for P1 in the
case where r = 1, suggests that a stable configuration is obtained
in approximately 30 steps and is similar to that presented in
Fig. 18 for 36 agents.

6. Comparison with scattered plots

The examples analyzed so far lead to stable agent config-
urations that maximized the average truth value for specified
patterns with certain parameters. Since they take the form of
scattered plots, it seems interesting to compare the properties
of these configurations with the results of Drezner’s classical
approach to the construction of suboptimal scattered plots for
facility layouts [7]. As the author writes, they may be applied in
various areas: ‘They proved to be very useful, for example, in the
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Fig. 14. Final configurations of Sakoda and Schelling models. (a) Sakoda suspicion; (b) Sakoda segregation; (c) Schelling segregation.
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Fig. 15. Definitions of distances used in segregation experiments.

Z?:l. j=1,

work of architects. Drawings of facilities scattered on a plane may be
a useful benchmark for them in urban planning, locating industrial
plants, etc.'.

The starting point for the construction of scattered plots pro-
posed in [7] is the definition of the objective function to mini-
mize, specified according to (11).
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In formula (11), ¢; denotes the link (intensity of interaction)

between facilities i and j, while d;; denotes the distance between

them. The proposed heuristic is very effective and is based on
the properties of eigenvectors and the eigenvalues of matrices.

f= ; (11)
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Fig. 16. Suspicion (left column: (a), (c), (e), (g)) and segregation (right: (b), (d), (f), (h)) experiment results for different neighborhood ranges r. (a) r = 0.1,
Mean_truth(P2) = 0.98, Mean_truth(P3) = 1; (b) r = 0.1, Mean_truth(P2) = 0.99; Mean_truth(P3) = 1; (c) r = 0.3, Mean_truth(P2) = 0.99; Mean_truth(P3) = 0.99;
(d) r = 0.3, Mean_truth(P2) = 0.99; Mean_truth(P3) = 0.96; (e) r = 0.5, Mean_truth(P2) = 0.99; Mean_truth(P3) = 0.97; (f) r = 0.5, Mean_truth(P2) = 0.99;
Mean_truth(P3) = 0.93; (g) r = 1, Mean_truth(P2) = 0.91; Mean_truth(P3) = 0.94; (h) r = 1, Mean_truth(P2) = 0.98; Mean_truth(P3) = 0.86.

Namely, if in formula (11) d; is replaced by ds which Drezner Eq. (12) has its optimal solution in a straight line. The x coor-
considers ‘intuitively reasonable’, we have formula (12). dinates of the solution are successive elements of the eigenvector
n 2 associated with the second smallnest eigenvalue of matrix S Yvhere

= Dict =1, g jCi° i (12) sj = —¢j fori=j apd Si = D Cif for all.z. The y F:oordmates
Z;‘ZMZ] dizj are elements of the eigenvector associated with the third smallest
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Fig. 18. Mean truth values dynamics (P1 or P2) for the examples studied.

eigenvalue of matrix S. Thus, the algorithm for obtaining a subop-
timal solution is relatively simple. Having the set of links cj, it is
enough to: (i) construct the matrix S; (ii) calculate all eigenvalues
and associated eigenvectors for S; (iii) select two eigenvectors
associated with the second and third lowest eigenvalues, treat
them as the coordinates x and y of the solution on a plane, and
calculate objective function values.

The implementation of the algorithm described above allows
for a comparative analysis of examples taken from Drezner’s
work that demonstrate the potential of the LP-based approach in
relation to the eigenvector approach. Table 3 presents three cases
of searching for optimal scattered plots in terms of the objective
function (12). In the matrix of relations between agents, pairs

15

(d)

0.2,
05 and r = 1, Mean_truth(P1) = 0.97;

0.1, Mean_truth(P1) = 0.98, Mean_truth(P3) = 1; (b) r =

that should be close to each other are denoted by 1, and by zeros
otherwise.

In Fig. 20, the first row shows the suboptimal scattered plots
obtained using the Drezner approach. Agent configurations for
the defined examples were based on agent relations expressed as
the truth value t(I) using the proposed Drezner method. The re-
spective patterns (1) and (3) were applied, assuming the distance
definition consistent with Fig. 9 where afuzzy = 0.05, bfuzzy =
0.1, and pd/sd = 0.05 is taken from the graph in Fig. 11. The best
configurations resulting from 10 trials are presented in the second
row in Fig. 20.

In these configurations, the mean truth values for the ap-
plied patterns and the value of f were calculated according to
Drezner's method. Analyzing the results from the perspective of
the f function, the plots obtained using the LP approach (row 2)
are worse than those obtained using eigenvectors. However, the
configurations shown in the second row are similar to those in
the first row in terms of the neighborhood structure of the agents.
They are characterized by high average truth values of the P1 and
P3 patterns. In addition, they show a very uniform distribution of
agents.

This is undoubtedly due to the similar perception of mutual
personal/ social distance in this model. In practical applications
for objects layout purposes, these distances can reflect, for ex-
ample, the size of objects or the required dimensions of space
allocated for agents’ activity. The eigenvector approach does not
take into account the sizes of objects in question.

The last row in Fig. 20 provides interesting results obtained in
the LP approach. To obtain scatter plots for this row, a
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Fig. 19. Schelling’s model simulation results for afuzzy = 0.05, bfuzzy = 0.5 for two different levels of pd/sd {0.2, 0.025} and r {0.2, 1}. (a) r = 0.2,
Mean_truth(P1) = 0.96, Mean_truth(P3) = 1; (b) r = 1, Mean_truth(P1) = 0.97; Mean_truth(P3) = 1; (c) r = 0.2, Mean_truth(P1) = 0.96; Mean_truth(P3) = 1;
(d) r = 1, Mean_truth(P1) = 0.96; Mean_truth(P3) = 1. (e) Mean_truth dynamics of P1 and P3 for configurations presented in (a), (b), (c), (d) with r = 1 and

pd[sd = 0.2.

series of pilot experiments were conducted. They aimed to es- It is worth noting that the value of f decreases as the de-
tablish such parameters for patterns P1 and P3 that were ex- nominator increases. Thus, in principle, the best configuration of
pected to act similarly to Eq. (11) in computing the objective agents is the one in which related objects are close together and
function. unrelated objects remain distant. In successive trials, the distance
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Fig. 20. Configurations obtained for Drezner examples with different parameters. The first row, that is, (a), (b), (c) presents scattered plots obtained by Drezner’s
approach. The distances in these plots are defined relatively and the physical scale is irrelevant. Hence there is no reference to the experimental area (no grid). However,
to make comparisons easier, we have applied the same scale as the one used in the second row. The second row, that is, (d), (e), (f) shows stable configurations for
afuzzy = 0.05, bfuzzy = 0.1, and pd/sd = 0.05. In the third row, i.e., (g), (h), (i) there are configurations obtained for afuzzy = 0.01, bfuzzy = 0.1, and pd/sd = 0.3.
The scale here is different, which results from applied LP parameter values. The values of f are calculated according to formula (11). (a) f = 0.060 (b) f = 0.112;
(c)f = 0.075; (d) f = 0.083, Mean_truth(P1) = 1; Mean_truth(P3) = 0.99; (e) f = 0.122, Mean_truth(P1) = 1; Mean_truth(P3) = 1; (f) f = 0.096, Mean_truth(P1) = 1;
Mean_truth(P3) = 0.98; (g) f = 0.060, Mean_truth(P1) = 0.4; Mean_truth(P3) = 0.92; (h) f = 0.111, Mean_truth(P1) = 0.19; Mean_truth(P3) = 0.85; (i) f = 0.074,

Mean_truth(P1) = 0.28; Mean_truth(P3) = 0.88.

definitions for given patterns, (the afuzzy value from Fig. 12)
gradually decreased, while the pd/sd value (Fig. 14) - increased.
The configurations presented in the third row of Fig. 20 (the best
of 10 trials) were obtained for afuzzy = 0.01, bfuzzy = 0.1, and
pd/sd = 0.3.

As can be seen from the graphs presented in row 3, the re-
sulting configurations are very similar in quality to those obtained
using eigenvectors. Furthermore, the assessment of their function
f was analogous and even slightly better for examples 2 and 3.
However, obtaining a high mean truth value for the P1 pattern
is not possible due to the distance definitions adopted in these
simulations. The pd/sd and afuzzy parameters would generally
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result in the layout of objects over a larger area than in the second
row presented in Fig. 20 and the lower Mean_truth(P1).

7. Discussion and possible applications

The simulation examples presented were designed for illustra-
tive purposes of the proposed methodology. The analyzed models
of qualitatively known optimal configurations (Figs. 8, 12 and
13) reproduced them in repeated simulations. For the bivariate
evaluations t(I) (Fig. 13), they are even surprising and suggest
that some analytical solutions exist and could be found for these
cases. The properties of the configurations obtained in the mi-
gration models studied (Fig. 17, 19) are generally consistent with
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Table 3
Drezner’s examples for scattered plots.

Facility Should be close to facility

Drezner1 Drezner2 Drezner3
1 8 10 15 5610 12 17 18 789
2 6 14 15 671213 14 16 468
3 11 18 19 8915 16 10 13 16
4 6 10 13 91115 17 21517
5 10 16 18 11117 18 918 19
6 241417 1210121319 2511
7 91319 21314 112 14
8 11516 314 16 1218
9 71217 34121516 17 110 11
10 14516 1618 19 3912
11 31318 4517 69 19
12 914 17 12691617 7 10 16
13 471119 26719 315 17
14 2612 27816 7 17 18 19
15 128 349 413 16
16 5810 23891214 31215
17 69 12 14591112 41314
18 3511 1510 58 14
19 3713 6 10 13 511 14

the results from the Sakoda and Schelling models. The observed
differences arise logically from the assumptions made in our ap-
proach. Analysis of Drezner’s [7] scattered plot examples (Fig. 20)
indicates that our LP concept gives much more flexibility in mod-
eling this type of problem, which allows it to be used in specific
practical implementations. For example, it is possible to include
the dimensions of objects, which is impossible in the classical
Drezner optimization method.

In general, the incorporation of knowledge-based LPs has ex-
panded the modeling possibilities and moved beyond treating
agents as individuals. As a result, the approach can be applied
in completely different contexts, and it allows for modeling prac-
tical issues other than social group migration. For example, the
freedom to define LPs makes it possible to obtain scatter plots
for facility layout problems. In this area, it may be interesting to
analyze the desired locations and neighborhoods of the collabo-
rating human team members. The results of such modeling can
be used, for example, to design their arrangements in open office
spaces. Furthermore, scattered plots may facilitate the determi-
nation of the desired arrangement of greenfield-designed factory
components, or production systems. In the latter cases, agents can
be interpreted as interacting buildings and/or machines.

Importantly, relationships and variables are specified for each
task using formulations defined by expert knowledge in terms
similar to natural language. Overall, in any application prob-
lem, one has to create such linguistic patterns that reflect logi-
cal relationships and the desired state of the examined system
in reality. Since often such a formal description by classic math-
ematical formulae may be difficult due to the information un-
certainty, the fuzzy sets and linguistic patterns appear to be
well fitted to this job. The determination of the appropriate
patterns can be obtained, for instance, by finding a consensus
between the knowledge of different experts within the given
field or in concrete situations. For example, such a compro-
mise for the arrangement of production machines within the
factory layout may be expressed by a linguistic pattern of the fol-
lowing form: ‘IF Transport_between_machines(i, j) IS FREQUENT
THEN Distance_between_machines(i, j) IS SMALL'. Experts should
define the fuzzy set membership functions for FREQUENT and
SMALL, based on their knowledge, experience, and available data.
The proposed linguistic expression corresponds to the logical
economic requirement of arranging objects to minimize trans-
portation costs.

The features described above and the flexibility of our ap-
proach also have some negative consequences. It provides a rela-
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tively large number of degrees of freedom in model construction
and analysis. Therefore, the properties of this methodology re-
quire further detailed research, in particular on the sensitivity of
the model to changes in various parameters, LP definitions, etc.

There are many possibilities to improve and extend the method
proposed in this work. For example, by broadening the concept
and its implementation to include additional evaluation criteria
defined by LPs. These could, for example, involve simultaneous
consideration of safety recommendations in the design of pro-
duction halls, interaction between facilities, social or cultural
preferences between groups of workers, or aesthetic evaluation
of design solutions. Such a multi-criteria approach would allow
modeling, analyzing, and searching for solutions in much more
complex systems. As far as the implementation of the proposed
methodology is concerned, the potential extension should allow
movement parameters to be set for individual agents or their de-
fined groups. An addition of this type would even more strongly
increase the flexibility of the proposed approach in modeling
practical issues from different areas. In the future, the corre-
sponding computer implementations of our proposal should take
into account the ability to independently and freely construct LPs
and define linguistic variables.

The examples presented in this paper suggest that the LP-
based approach may be an interesting perspective to analyze
the dynamics of interconnected agents with different mutual
attitudes in various contexts. A unique feature of this approach
is the ability to define mutual relations and behavioral rules
using expressions similar to those found in natural language. They
model imprecisely defined behavioral rules for agents. The rules
of multivalued logic and fuzzy sets applied to such modeling
are a generalization of traditional bivalued logic and sets. Thus,
our models can also operate on exact data (physical proper-
ties) and/or combine various types of data and relations. The
implemented model of agent behavior, although evaluated and
validated rather qualitatively, is promising. In all cases, a stable
configuration of the agents was achieved relatively quickly.

The interaction rules in our approach are simple, the same for
each agent, and the number of agents is significant. According
to the classification proposed by Kliemt [59], this type of model
belongs to the thin group. At the other extreme of the mentioned
classification are thick models. This type of modeling consists in
reproducing, as accurately as possible, the knowledge about char-
acteristics and behavior of a comparatively small group of diverse
agents as, for example, in [60,61]. In these works, the characteris-
tics and rules of agent behavior were constructed based on multi-
disciplinary knowledge of consumer behavior, social psychology,
marketing, and organizational culture. Since our LP-based pro-
posal facilitates flexible design of patterns using multiple, natural
language-like expressions, it allows one to easily take the knowl-
edge of multiple experts from different fields and encapsulate it
in a single approach. Therefore, the design of thick models seems
to be another interesting challenge and a direction for further
exploration of the possibilities offered by our approach.

8. Conclusions

In this research, we showed how the concept of LPs combined
with expert knowledge can be used to model the dynamics of so-
cial groups. This approach belongs to the domain of agent-based
modeling that involves migration.

In our proposal, linguistic phrases similar to natural language
define ideal properties of the examined system. They are the basis
for generating virtual forces that govern the movements of the
individual agent. The development of agent behavior rules results
from logical sentences and the methodology to determine their
degree of truth. Such an approach allows us to construct flexible
simulation models.
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In this paper, we not only describe our idea in detail, but
also illustrate its capabilities and properties by simple examples
and a series of simulation experiments. They include problems
of known solutions with stable final configurations that were
analyzed. The analyses show that qualitative results of classical
ideas from previous works can be obtained without original lim-
itations such as moving on a grid. These models, as shown in the
examples, also use the paradigm of inferring the behavior of the
dynamics of the entire social system based on the interactions
between its members.

We also validated our approach by applying and comparing it
with a suboptimal scattered plot generation method proposed by
Drezner. The simulations performed for classic problems showed
the convergence of agent dynamic behavior in our method with
the solutions provided by the Drezner approach.

As was broadly discussed in the previous section, the pre-
sented method can be potentially widely used in a variety of
situations, and the proposed framework can be easily extended
to model other types of complex systems.

Define input data:

Links matrix Lyxn
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Patterns definitions and relationships of calculating t(/) and t(r)

Determination of the (rectangular) area

Arrange randomly n agents in the available area

Determine maximal number of steps in simulation ¢ and values of s and r

count=1,
Repeat
Fori=1tondo
Begin
VF=0
Forj=1 (andj<>1i)tondo
Begin
If Distance(i, j) <= r then
Begin
For each Pattern do
Begin
Determine pattern Truth(i, j)
Determine vector VF(i, j)
VF := VF + VE(i, )
End
End(If)
Move agent i according to VF adjusted by s/n
End
Calculate Mean_truth values for agent i (for all patterns)
End

Calculate and write Mean_truth values for all patterns and all agents

count = count +1

Until count=t+ 1
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Appendix

The proposed model pseudocode:
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